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e.g. PRL, e.g. [Toyer et al. (2018); Groshev et al. (2018); Issakkimuthu et al. (2018); Garg et al. (2019); Rivlin

et al. (2020); Toyer et al. (2020)]

But what about trust in a learned neural network action policy?
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• Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

• Visualization, e.g. [Gros et al. (2020a)]

• Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and Platzer (2018)]

• Testing, e.g. [Julian et al. (2020); Steinmetz et al. (2021)]

• Verification:

• single decision episodes, e.g. [Katz et al. (2017); Gehr et al. (2018)]

• n-step reachability, e.g. [Akintunde et al. (2018, 2019)]

• statistical guarantees, e.g. [Gros et al. (2020b)]

Here: safety verification,

Do there exist s ∈ S0, t ∈ SU such that t is reachable from s

under an NN action policy π?
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Predicate Abstraction

• State abstraction Θα:

α : s 7→ A, while preserving transitions.

• Predicate abstraction Θ|P over predicates P, e.g. [Graf and Säıdi (1997)],

s 7→ A according to truth values s induces over P,

e.g. P = {x = 7, x ≤ y}.

Motivation: safety verification via (over-approximating) reachability analysis in Θ|P .

Computing Θ|P :

Does there exists a transition

from abstract state A to A′ under action a in Θ|P?

Do there exist concrete states s ∈ A and s ′ ∈ A′ such that

there is a transition from s to s ′ under a in Θ?

– encoded as SMT-test [Barrett et al. (1994)].
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Policy Predicate Abstraction

• Θπ|P , predicate abstraction of the policy-restricted state space Θπ.

Does there exists a transition

from abstract state A to A′ under action a in Θπ|P ?

Do there exist concrete states s ∈ A and s ′ ∈ A′ such that

there is a transition from s to s ′ under a in Θ and π(s) = a?

– SMT-test encodes NN-SAT problem.

Approach: Plugging in Progress on NN Analysis

• over-approximating SMT-tests,

• dedicated NN analysis methods,

e.g., Marabou [Katz et al. (2019)] for continuous over-approximation.
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Experiments: Scalability Study

Experimental setting:

• Z3 [de Moura and Bjørner (2008)] & Marabou [Katz et al. (2019)]

• PA+Marabou (computing an over-approximation of Θπ|P),

• PA+Branch&Bound(Marabou) and PA+Marabou+Z3 (computing Θπ|P),

• Racetrack modeled in Jani [Budde et al. (2017)].
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Scaling over |P|

• PA+Marabou computes a rather fine over-approximation of Θπ|P .

• PA+Marabou/PA+BB(Marabou) outperforms PA+BB(Marabou)/PA+Marabou+Z3.

• Runtime is highly dependent on granularity of P, increasing for coarse P.
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Scaling over |S0|
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Conclusion

• Policy predicate abstraction as a technique

to enable NN action policy safety verification.

• Empirical results:

• Safety verification via policy predicate abstraction may be feasible.

• Rather fine but significantly less expensive over-approximations of Θπ|P via PA+Marabou.
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Questions?

8



References i

References

Adrian Agogino, Ritchie Lee, and Dimitra Giannakopoulou. Challenges of explaining control. In

2nd ICAPS Workshop on Explainable Planning (XAIP’19), 2019.

Michael Akintunde, Alessio Lomuscio, Lalit Maganti, and Edoardo Pirovano. Reachability

analysis for neural agent-environment systems. In 16th International Conference on

Principles of Knowledge Representation and Reasoning (KR’18), pages 184–193, 2018.

M. E. Akintunde, A. Kevorchian, A. Lomuscio, and E. Pirovano. Verification of RNN-based

neural agent-environment systems. In AAAI19, pages 6006–6013. AAAI Press, 2019.
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