

Integrating Relational Planning and Reinforcement Learning for Effective Abstraction

Harsha Kokel

Sriraam Natarajan

Balaraman Ravindran

Arjun Manoharan

HIT MADRAS

Prasad Tadepalli

Overview

Goal:

Learning to act in relational domains with varying number of tasks and interacting objects

Proposed Solution:

Use a (relational) hierarchical planner to provide abstractions for the RL agents

Toy Example

- Extended Taxi domain
- Planner provides sequence of passenger pickup and drop

Toy Example

- Extended Taxi domain
- Planner provides sequence of passenger pickup and drop
- Learn driving route

RePReL

- Plan the sequence of operators at high level and learn to execute each operator at lower level
- Advantage:
 - Compositionality
 - Task specific abstract representations
- Relational MDP which is deterministic and fully observable
- Adapt First Order Conditional Influence statements to specify bisimulation conditions of MDPs for 'safe' abstractions.

RL AGENTS

Abstraction

First Order Conditional Influence (FOCI) statements

if *condition* then X1 influence X2

Dynamic FOCI statements

$$ext{operator} : X1 \stackrel{+1}{\longrightarrow} X2$$

Natarajan, Tadepalli, Dietterich, and Fern 2008

Abstraction

	State	$\begin{aligned} &\{at(p1,r),taxi-at(13),dest(p1,y),\negat\text{-}dest(p1),\negin\text{-}taxi(p1),\\ &at(p2,b),dest(p2,g),\negat\text{-}dest(p2),\negin\text{-}taxi(p1)\} \end{aligned}$
Given	subtask	$\langle \; \operatorname{pickup}(P), \{P/p1, L/r\} angle$
	D-FOCI	$ \begin{array}{l} \{ \text{taxi-at}(\text{L1}), \text{move}(\text{Dir}) \} \xrightarrow{+1} \text{taxi-at}(\text{L2}) \\ \{ \text{taxi-at}(\text{L1}), \text{move}(\text{Dir}) \} \longrightarrow R \\ \text{pickup}(\text{P}): \\ \{ \text{taxi-at}(\text{L1}), \text{at}(\text{P}, \text{L}), \text{in-taxi}(\text{P}) \} \xrightarrow{+1} \text{in-taxi}(\text{P}) \\ \text{pickup}(\text{P}): \text{in-taxi}(\text{P}) \longrightarrow R_{o} \end{array} $
Get	Abstract state	$\{\operatorname{at}(\operatorname{p1},\operatorname{r}),\operatorname{taxi-at}(13),\neg\operatorname{in-taxi}(\operatorname{p1}),\operatorname{move}(\operatorname{Dir})\}$

Abstraction

Given	State subtask D-FOCI	$ \begin{split} & \{ \operatorname{at}(\operatorname{p1}, \operatorname{r}), \operatorname{taxi-at}(13), \operatorname{dest}(\operatorname{p1}, \operatorname{y}), \neg \operatorname{at-dest}(\operatorname{p1}), \neg \operatorname{in-taxi}(\operatorname{p1}), \\ & \operatorname{at}(\operatorname{p2}, \operatorname{b}), \operatorname{dest}(\operatorname{p2}, \operatorname{g}), \neg \operatorname{at-dest}(\operatorname{p2}), \neg \operatorname{in-taxi}(\operatorname{p1}) \} \\ & \langle \operatorname{pickup}(P), \{ P/p1, L/r \} \rangle \\ & \{ \operatorname{taxi-at}(L1), \operatorname{move}(\operatorname{Dir}) \} \xrightarrow{+1} \operatorname{taxi-at}(L2) \\ & \{ \operatorname{taxi-at}(L1), \operatorname{move}(\operatorname{Dir}) \} \longrightarrow R \\ & \operatorname{pickup}(P): \\ & \{ \operatorname{taxi-at}(L1), \operatorname{at}(P, L), \operatorname{in-taxi}(P) \} \xrightarrow{+1} \operatorname{in-taxi}(P) \\ & \operatorname{pickup}(P): \operatorname{in-taxi}(P) \longrightarrow R_o \end{split} $	Safe model-agnostic abstraction
			(Theorem 1)
Get	Abstract state	$\{\mathrm{at}(\mathrm{p1},\mathrm{r}),\mathrm{taxi-at}(13),\neg\mathrm{in-taxi}(\mathrm{p1}),\mathrm{move}(\mathrm{Dir})\}$	

RePReL Learning Algorithm

- Get high level plan
- For each sub-task
 - Get resp. policy π
 - Loop till the sub-task is achieved
 - Get the abstract state *s*
 - Get action *a* from the policy π
 - Step in env observe reward $\langle s, a, r, s' \rangle$
 - Update the policy π

*Q learning

- Evaluate for
 - Sample efficiency
 - Transfer across task
 - Generalization across objects

trl: Taskable RL (Illanes et al. ICAPS 2020)

- Sample efficiency
- Transfer across task
- Generalization across objects

	state	abstract state (pick-up)	
Relational {s}	$\begin{array}{c} at(p1,r), taxi-at(13), dest(p1,y), \neg at-dest(p1), \neg in-taxi(p1), \\ at(p2,b), dest(p2,g), \neg at-dest(p2), \neg in-taxi(p1) \end{array}\}$	$\{\operatorname{at}(\operatorname{pl}, \operatorname{r}), \operatorname{taxi-at}(13), \neg \operatorname{in-taxi}(\operatorname{pl}), \operatorname{move}(\operatorname{Dir})\}$	
Vector [s,a]	[at-p1, dest-p1, in-taxi-p1, at-dest-p2, at-p2, dest-p2, in-taxi-p2, at-dest-p2, taxi-at, move]	[at, taxi-at, in-taxi, move]	

B	*	*	С
*	<u></u>		*
A	*	*	D

Symbol	Meaning
	Agent
*	Furniture
<u>له</u>	Coffee machine
\boxtimes	Mail room
ß	Office
A, B, C, D	Marked locations

Office world

Box world

Craft world

For human-level general intelligence, the ability to detect compositional structure in the domain and form task-specific abstractions are necessary.

THANKS