
Domain-Independent Reward Machines for Modular
Integration of Planning and Learning

Giuseppe De Giacomo, Marco Favorito, Luca Iocchi and Fabio Patrizi

Sapienza University of Rome

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 2/16

Context: Integrating Planning and Learning

The integration of Planning and Learning has many advantages:

● High-level Reasoning + Low-level Adaptivity
● Model based -> Sample efficiency
● Decomposable tasks and reuse of sub-policies

In this work:

● high-level symbolic action models and plans (Symbolic Planning)
● low-level reward-based control (Reinforcement Learning)

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 3/16

Related Work and Limitations

● HRL and Options framework (Sutton, Precup, and Singh 1999)
○ Non-trivial modelling effort
○ Mapping between the different representation layers

● Plans that produce rewards to drive RL agents (Grzes and Kudenko, 2008)
○ Cannot easily transfer learned policy to new tasks

● Reward Machines (Icarte et al. 2018)
○ Automaton is manually specified
○ Explicit mapping is required

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 4/16

Domain-independent Reward Machines

Our approach:

● High-level decision making generates a reward machine
● RL learns optimal policy maximizing received rewards
● Automatic generation of options
● No explicit mapping between state spaces

Similar to Taskable RL (Illanes et al. 2020), except that it
allows greater decoupling between planning and learning
modules

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 5/16

Planning Module

● Inputs (offline):
○ a (deterministic) planning domain and
○ a goal

● Output (offline): a plan
○ Computed using any off-the-shelf planner

Could also monitor the environment and
recompute the plan.

Planning module

Domain, Goal

Plan

high-level state

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 6/16

Reward Machine

● A reward machine is generated from a plan
○ From the plan, get the transition graph
○ Add rewards on transitions (e.g. using reward shaping)

● Input: new high-level env state
● Outputs:

○ Task rewards
○ Current goal state
○ Available next (high-level) goal states

Two roles:
● Monitoring of the learning agent via rewards
● Machine transitions can be seen as options

Plan

high-level state

Reward, current state, [next states]

Reward Machine

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 7/16

Learning Module

● Input: reward, current goal state, low-level env state
● Output: a policy

Remarks:

- Agnostic w.r.t. learning algorithm
- Can use options
- Decoupled from high-level representation

Learning module

Reward, current state, next states

Environment

a r

low-level
statehigh-level

state

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 8/16

Domain-independence

From the learning module’s point-of-view,
setting is the same of Restraining Bolts
(De Giacomo et al. 2019)

Agent only needs to keep track of RB states
and agent’s features (not the fluents)

G. De Giacomo, M. Favorito, L. Iocchi, and F. Patrizi.
Foundations for Restraining Bolts: Reinforcement
Learning with LTLf/LDLf Restraining Specifications.
ICAPS, 2019.

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 9/16

Automaton transitions as sub-tasks

Next goal states can be exploited to improve sample efficiency:

● Sub-task exploration policies:
○ Epsilon-greedy with sub-task epsilon decay
○ Probabilistic choice base on success rate of transition (q_t, q_t+1)

● Meta-controller of options
○ Choose the current best available macro-action
○ Observe total return from an automaton transition
○ Update Q-function of meta-controller

● Shared sub-tasks allow reuse of acquired knowledge

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 10/16

A Taxi has to move on a gridworld, pick-up a passenger, and
drop-off him to a specific location (Red, Gree, Yellow, Blue).

Planning domain: goto X, pick-up and drop-off

Learning domain: east, west, north, south, pick-up, drop-off

Example: Taxi Environment (Dietterich, 2000)

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 11/16

Example: Taxi Environment (Dietterich, 2000)

Simplified Taxi planning domain. Fluents:

● p_at_X: passenger is at location X
● p_on_t: passenger is on the taxi
● d_at_X: final destination is X

At the beginning:

- the passenger can be either at Red or at Yellow.
- The destination is always Green.

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 12/16

Example: Taxi Environment (Dietterich, 2000)

● In Red, the initial states
● In Blue, the goal state

The two sequences of arrows are the plans for two
different tasks.

The Yellow state is shared between the two plans,
no need to learn again from it

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 13/16

Example: Breakout (De Giacomo et al. 2019)

Task: remove columns in a specific order (e.g. left to right)

Planning domain: only models column removal

Learning domain: low-level paddle control and sensing

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 14/16

Example: Sapientino (De Giacomo et al. 2019)

Task: visit colors in a certain order

Planning domain: only models high-level moves

Learning domain: low-level grid movement controls

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 15/16

Task: use tools and collect resources

Planning domain: goto location, collect res., use tool

Learning domain: low-level grid movement controls

Example: Minecraft (De Giacomo et al. 2019)

Domain-independent Reward Machines for Integration of Planning & LearningMarco Favorito 16/16

● Modular Integration of symbolic planning and RL
● Planning and Learning modules are decoupled
● Yet, the agent can potentially optimize for the plan

○ if the environment allows it
● Sample efficient and decomposable

Future work:

● Non-deterministic planning domain
○ plans as graphs rather than sequences

● Online planning: react to unforeseen events
● Model refinement from learning module feedback

Conclusions

