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Introduction - Motivation

Al Planning

Reinforcement Learning

Integrated Method

Efficient for finding
goal directed sequence of actions

Scalable through compact symbolic
encoding of state transition system

. Plans are natively explainable

Difficult to obtain symbolic models in
general

Cannot handle perception-oriented
high dimensional inputs, e.g. images

Easily handle low level control signals,
high dimensional inputs

. No need to provide symbolic models

High cost of maintaining large amount of
data

Most RL methods are suffering from sample
inefficiency

. Learned policy is not easy to understand

. Tasks are handled by Al Planner
. Low level perceptions are handled by RL
. Improve Scalability and Sample Efficiency

. Obtain Easier to understand plans or policy



Background — RL and Options Framework

Markov Decision Process M = (S, 4, P, R, ) stationary stochastic policy m(a|s) : S x A — [0, 1]

S : states {s1,82,...,8n} g
MEU = = 1 oo x> 0 Atrt
A : actions {ai,az2,...,am} U = maxy limy [2i=0 V7]
P : probability functions {p(s’|s,a)|s,s’ € S,a € A} V7™ (s) =2, m(a|s)r(s,a) + 7> ycsp(s'|s,a)V7(s)]
R : reward functions  {r(s,a)|ls € S,a € A} V*(s) = max, V™ (s)

7 : Discounting factor Y € (0, 1]
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CLO CLl CL2 CL3 CL4
SIS oL-o—=ok ...
p(s?) p(s']s%,a’) p(s*|st.at) p(s*|s*,a?) p(s*]s’,a”)
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Super script for time step



Background — RL and Options Framework

Options Framework <,/\/l, O> [Sutton, Precup, and Singh 1999]
O : options {01,02,...,0/0} Option level policy (0'|s,0) : S x O x O — [0, 1]

0= (I,,m,,B3(0)) I,: Option Initiation set Intra Markovian option policy {7, (al|s,0)|o € O}

To : Intra option policy function , . , : : :
Option level MDP is semi-MDP since duration of option

B(0) : Option termination set execution steps is random variable
o’ < o2 o’ (o
(a®[s”, 0") (al|st, o) (a3]s3, 0%) (a%|s4, 0%)
0 1 02 o3 oA
SO —-o—ok- .-
p(s°) p(s*]s’,a’) p(s*lst,a) p(s°|s%,a?) (s*|s®,a”)




Background — RL and Options Framework

Semi-MDP . B _ 3
01 = arg max,co f(o|s”) 05 = arg max,co fi(0lo1, s°)
3
e, s € Boll s° € I, : s* € Bo.
_ t=2 4
r(s?,01) =32 ¥'r(s",a") F(s%,05) =237 (st al)

0" <D, <.

7(a®]s?, 0%) m(al|st, ol)
af al

p(s9) p(s']s?,a?) p(s?|st,al) ‘ 2, p(s*]s®,a®) ‘
D D KDy KD D

r(s°,a?)

Value function for SMDP over options:  1/#(s) = > oco B0]8)[F(s,0) + ¥ Y e g D(S']s, 0) VP (s")]
Sum of the probability over state transitions over option:  D(S’|s,0) = Z;io ’yjp(s = sttJ s = St)

Optimal value over SMDP over options: V*(s) = arg max; V#(s)



Background — Al Planning Task

Al Planning Task T = (V' , O, S;)

V' : variables

()/

{VO,Vl, . '7‘/|V’|}
{01702, . 7O|O’|}

operators
’.
S :Goal states S, C S’

S’ - Planning states
{(V() =y, V1 =v1,..., ‘/|V’| = U|V/|)|V;' € V/}

(:action move—-in—-room
:parameters (?from - location ?to - location ?r - room)
:precondition (and

(IN ?from ?r)
(IN ?to ?r)
(CONNECTED ?from ?to)
(in—-room ?r)
(at ?from)
)
:effect (and
(not (at ?from))
(at ?to)

(:action move—out—-room
:parameters (?from - location ?to - location ?r - room ?s — room)
:precondition (and

(IN ?from ?r)

(IN ?to 7?s)

(CONNECTED ?from ?to)
(CONNECTED-ROOMS ?r 7?s)
(at ?from)

(in-room ?r)

(not (at ?to))

(not (in—-room ?s))

)

:effect (and
(not (at ?from))
(at ?to) G
(not (in-room ?r) )
(in—-room ?s) .




Planning Annotated RL (PaRL)

Planning Annotated RL Task (PaRL) (M, T, L)
M : MDP T : AlIPlanningTask L : State mapping function L :S — S’

Given MDP M = (S, A, P, R, ) Define an option for each operator Op € O’

Option 0 = (I, Ty, 5(0)) Io, = {s € S|precondition(Op) C L(s)}
Initiation set I,: S = {T,F} | T if prevail (Op) U effect (Op) C L(s)
Intra-option policy 7,: 9 x A — [07 1] 50? )l F ow.

Termination set By: S —[0,1]

Al Planning Task operator Option for MDP task

(Move from r5 to c-r5-r3) Io = {s € Slin-room(r5:room) C L(s)}

(precondition): in-room(r5) Bo = {s € S|in-room(c-r5-r3:room) C L(s)}

(effect): in-room(c-r5-r3)




Solving PaRL

01 := (Move from rl to c-r1-r2) 05 := (Move from c-rl-r2 to r2)
e, s® € By, $3 € Lo, st € 5o5|
7(s%,00) =329 "7 (5", ") (%, 05) =125 7' Pr(s' a)

* PaRL provides “side information” to the RL agent
* Can be viewed as a model-based hierarchical RL approach

* Al planner generates high-level plans at the level of options
» Offline Planning: option sequence is generated before learning intra option policy functions

* Online Planning: option sequence is generated while learning policy functions



Solving PaRL — Offline Options Training+ SMDP Learning

* Problem: there are many options available to train/use.
* We want to use only “useful” options for solving a problem with a fixed initial state and terminal state.

Planning Annotated RL Task (PaRL)

-

MDP
Environment

"

Sinit

Sterminal

~

8/

i,nit
L:S—)S/‘Sgoal

Al Planning
Task

Option Selection by Offline planning

4 I
2.
1 Generate Option
PaRL Plan Selection
o 4

1. Al planner generates plans over options

2. Select options

- Rank options with some score functions
such as frequency

* Intra option training: train only selected options by any RL algorithm

 SMDP learning: train option level policy function over the selected options and primitive actions



Solving PaRL — Experiments

SMDP Learning + Proximal Policy Optimization using pretrained options [Sutton, Precup, and Singh 1999]
* Intra-option policy training: PPO with A [Schulman, et. al 2017]
* Option level policy training: PPO with A U O

rooms-0-20-8 test-O samples vs reward fix_init:True rooms-0-20-8 test-1 samples vs reward fix_init:True
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Related Works

Hierarchical RL [Kulkarni, et. al 2016]

» Define master/slave architecture and master policy generates subgoals for each slave
e Agent policy at the lower level is similar to the options

Option Critic [Bacon and Precup 2017]

* End-to-End approach for training intra option and option level policy functions
* Learning algorithm: policy gradients derived for option value function

PEORL/SDRL [Yang, et. al 2018][Lyu, et. al 2019]
* Derive a Planning task from BC action language
* Define 1 option per state transition in planning problem
* Learning algorithm: R-max learning

Taskable RL [lllanes, et. al 2020]
* Derive a planning task from subtasks in RL problem
* Manually define termination set of options from planning operators
* Learning algorithm: SMDP-Q learning + Q-learning for intra option training



Conclusion

* Planning annotated RL
* Annotate an RL task with a planning task and derive hierarchical RL architecture
* Generate option specifications from planning operators
* Option level policy learning can utilize Al planning algorithms

* Solving PaRL task
» Offline approach: utilize Al planner for selecting useful options for RL task

e Future Work

* Online approach: interleave option selection and intra-option training
* Learning Al planning task from RL environment



