Extending Graph Neural Networks for Generalized Stochastic Planning

Ziqi Zhang Florian Geißer

The Australian National University

Policy:

- Mapping from states to actions
- Solution to a specific planning problem

General Policy:

- · Applicable to every problem of a given domain class
- · Policies commonly represented as Neural Networks

Different architectures support different modeling languages

- PDDL (classical planning / SSPs):
 - STRIPS Hypergraph Networks (Shen et al. 2020)
 - · Action Schema Networks (Toyer et al. 2018)
- RDDL (MDPs)
 - SymNet (Garg et al. 2020)
 - TrapsNet (Garg et al. 2019)

Our work: A novel network architecture for planning

- builds on the ideas of TrapsNet
 - but allows fluents of arbitrary size
- is applied to RDDL problems
 - · but is in principle independent of the modeling language
- · allows to train a graph network on small instances
- · evaluation on IPC 2014 domains shows promising results

Relational Markov Decision Process

A Relational Markov Decision Process consists of:

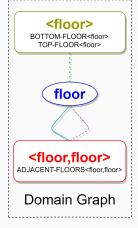
- A set of types T
- state, action, and static predicate symbols F
 - · denote relations of and between typed objects
- a lifted transition function P and reward function R
 - · describes the dynamics of the first-order MDP

Given a set of objects, applying predicates to type-consistent objects is known as the process of grounding and yields a factored MDP.

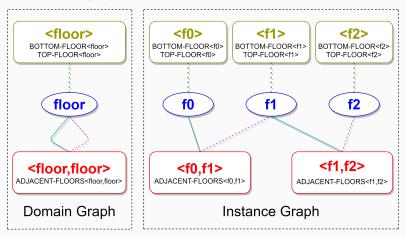
Running Example: Elevator domain

- Types: floor, elevator
- · State predicates:
 - person-waiting-at-floor(elevator, floor)
 - elevator-at-floor(elevator, floor)
- · Action predicates:
 - go-up(elevator), go-down(elevator)
 - open-door(elevator), close-door(elevator)
- · Static predicates:
 - TOP-FLOOR(floor)
 - BOTTOM-FLOOR(floor)
 - ADJACENT-FLOORS(floor, floor)

A domain graph shows relations between types



An instance graph shows relations between objects



- Domain/Instance are used in a graph neural network
- Every instance graph vertex v has an initial embedding h_0^v
- Embedding at step k + 1 is computed by forward pass over the network at step k
 - we use the attention mechanism to aggregate a set of vectors with unknown cardinality
- Final policy is computed by action decoder as a distribution over grounded actions

- Four domains of the IPPC 2014
- · Network trained on the three smallest instances
- We compare against PROST (Keller et al. 2012)
- · Our empirical evaluation is only a preliminary study

Evaluation

	Tamarisk domain		Wildfire domain	
Instance	THTS	Network	THTS	Network
1(trained on)	-151±19.7	-146±15.4	-647.1 ± 288	-548.2±300
2(trained on)	-542±27.7	-530±24.2	-11201.3±499	-10048.1±408
3(trained on)	-206±27.3	-222±23.8	-1694.3±592	-1890.2±550
4	-826±28.4	-822 ± 28.6	-20126.8±1180	-14616.3±816
5	-723.9±41.4	-655±38	-2905.0±686	-1515.6±423
6	-1071±26.2	-1045 ± 33.2	-25866.2±864	-8862.6±1030
7	-891±43.2	-823±41.7	-8816.2±748	-6845.2±646
8	-1285±23.5	-1251 ± 28.2	-15811.8±1400	-11124±910
9	-902±53.2	-860±59.9	-14457.6±629	-8721.6±906
10	-1346 ± 36.3	-1290 ± 39.3	-21766.5±1110	-11331.1±619

	Elevator domain		Sysadmin domain	
Instance	THTS	Network	THTS	Network
1(trained on)	-42.5±2.5	-45.8±2.6	340.1±3.7	339.5±4.8
2(trained on)	-23.8±2.2	-23.6±2.6	315.3±7.2	303.5±9.9
3(trained on)	-61.6±1.9	-62.6±1.9	550.2±14.1	541.4±13.7
4	-54.2±4.2	-96.7±5.1	495.4±16.3	459.8±14.3
5	-64.9±4.6	-104.2±4.9	581.0±17	587.9±15.2
6	-83.3±3.8	-120.0±3.8	529.8±15.4	553.6±15.8
7	-79.4±5.4	-133.2±6.3	611.0±14.7	683.7±16.1
8	-88.2±5.2	-151.3±5.8	505.3±16.5	532.1±13.6
9	-107.5±5.4	-160.8 ± 5.5	739.9±17.1	825.5±14.3
10	-66.5±5.9	-117.0±7.7	553.8±14.4	606.5±15.6

- · Novel network architecture based on domain graphs
- Allows for problems with arbitrary predicate size
- Generalizes well across instances of different size
- Interesting aspect: network is in principle independent of the modeling language used

References

- Garg, Sankalp, Aniket Bajpai, and Mausam (2019). "Size Independent Neural Transfer for RDDL Planning". In: Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019). Ed. by Nir Lipovetzky, Eva Onaindia, and David E. Smith. AAAI Press, pp. 631–636.
- (2020). "Symbolic Network: Generalized Neural Policies for Relational MDPs". In: International Conference on Machine Learning, pp. 3397–3407.
- Keller, Thomas and Patrick Eyerich (2012). "PROST: Probabilistic Planning Based on UCT". In: Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling (ICAPS 2012). Ed. by Lee McCluskey, Brian Williams, José Reinaldo Silva, and Blai Bonet. AAAI Press, pp. 119–127.
- Shen, William, Felipe Trevizan, and Sylvie Thiébaux (2020). "Learning Domain-Independent Planning Heuristics with Hypergraph Networks". In: Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020). Ed. by J. Christopher Beck, Erez Karpas, and Shirin Sohrabi. AAAI Press, pp. 574–584.
- Toyer, Sam, Felipe Trevizan, Sylvie Thiébaux, and Lexing Xie (2018). "Action Schema Networks: Generalised Policies with Deep Learning". In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018). AAAI Press, pp. 6294–6301.

Z. Zhang, F. Geißer – Extending Graph Neural Networks for Generalized Stochastic Planning