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Computing General Policies for Planning Problems

Policy:

• Mapping from states to actions

• Solution to a specific planning problem

General Policy:

• Applicable to every problem of a given domain class

• Policies commonly represented as Neural Networks
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Computing General Policies for Planning Problems

Different architectures support different modeling languages

• PDDL (classical planning / SSPs):
• STRIPS Hypergraph Networks (Shen et al. 2020)
• Action Schema Networks (Toyer et al. 2018)

• RDDL (MDPs)
• SymNet (Garg et al. 2020)
• TrapsNet (Garg et al. 2019)
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Computing General Policies for Planning Problems

Our work: A novel network architecture for planning

• builds on the ideas of TrapsNet
• but allows fluents of arbitrary size

• is applied to RDDL problems
• but is in principle independent of the modeling language

• allows to train a graph network on small instances

• evaluation on IPC 2014 domains shows promising results
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Relational Markov Decision Process

A Relational Markov Decision Process consists of:

• A set of types T

• state, action, and static predicate symbols F

• denote relations of and between typed objects

• a lifted transition function P and reward function R

• describes the dynamics of the first-order MDP

Given a set of objects, applying predicates to type-consistent
objects is known as the process of grounding and yields a
factored MDP.
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Running Example: Elevator domain

• Types: floor,elevator
• State predicates:

• person-waiting-at-floor(elevator, floor)
• elevator-at-floor(elevator, floor)

• Action predicates:
• go-up(elevator),go-down(elevator)
• open-door(elevator), close-door(elevator)

• Static predicates:
• TOP-FLOOR(floor)
• BOTTOM-FLOOR(floor)
• ADJACENT-FLOORS(floor, floor)
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Domain Graph

A domain graph shows relations between types
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Instance Graph

An instance graph shows relations between objects
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Network Architecture

• Domain/Instance are used in a graph neural network

• Every instance graph vertex v has an initial embedding hv0

• Embedding at step k + 1 is computed by forward pass over
the network at step k

• we use the attention mechanism to aggregate a set of
vectors with unknown cardinality

• Final policy is computed by action decoder as a distribution
over grounded actions
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Empirical Evaluation

• Four domains of the IPPC 2014

• Network trained on the three smallest instances

• We compare against PROST (Keller et al. 2012)

• Our empirical evaluation is only a preliminary study
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Evaluation

Tamarisk domain Wildfire domain

Instance THTS Network THTS Network

1(trained on) -151±19.7 -146±15.4 -647.1± 288 -548.2±300
2(trained on) -542±27.7 -530±24.2 -11201.3±499 -10048.1±408
3(trained on) -206±27.3 -222±23.8 -1694.3±592 -1890.2±550
4 -826±28.4 -822±28.6 -20126.8±1180 -14616.3±816
5 -723.9±41.4 -655±38 -2905.0±686 -1515.6±423
6 -1071±26.2 -1045±33.2 -25866.2±864 -8862.6±1030
7 -891±43.2 -823±41.7 -8816.2±748 -6845.2±646
8 -1285±23.5 -1251±28.2 -15811.8±1400 -11124±910
9 -902±53.2 -860±59.9 -14457.6±629 -8721.6±906
10 -1346±36.3 -1290±39.3 -21766.5±1110 -11331.1±619

Elevator domain Sysadmin domain

Instance THTS Network THTS Network

1(trained on) -42.5±2.5 -45.8±2.6 340.1±3.7 339.5±4.8
2(trained on) -23.8±2.2 -23.6±2.6 315.3±7.2 303.5±9.9
3(trained on) -61.6±1.9 -62.6±1.9 550.2±14.1 541.4±13.7
4 -54.2±4.2 -96.7±5.1 495.4±16.3 459.8±14.3
5 -64.9±4.6 -104.2±4.9 581.0±17 587.9±15.2
6 -83.3±3.8 -120.0±3.8 529.8±15.4 553.6±15.8
7 -79.4±5.4 -133.2±6.3 611.0±14.7 683.7±16.1
8 -88.2±5.2 -151.3±5.8 505.3±16.5 532.1±13.6
9 -107.5±5.4 -160.8±5.5 739.9±17.1 825.5±14.3
10 -66.5±5.9 -117.0±7.7 553.8±14.4 606.5±15.6
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Conclusion

• Novel network architecture based on domain graphs

• Allows for problems with arbitrary predicate size

• Generalizes well across instances of different size

• Interesting aspect: network is in principle independent of
the modeling language used
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