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Planning Heuristics

Heuristics are necessary for efficient
planning.

• More specific heuristics can better
leverage domain/problem structure.

• Domain dependent heuristics are hard
to find.

• Problem specific heuristics have limited
applications.
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Learning Heuristics

Value-based reinforcement learning (RL):
• can learn optimal heuristics (typically

problem specific but not always), but
• requires many interactions and a lot

of computation.

Our goal: combine RL and domain
independent heuristics to efficiently learn
domain dependent heuristics.
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Contributions

Our two main contributions are:

1 using neural logic machines to learn goal and problem conditioned
heuristics, and

2 using potential-based reward shaping to efficiently learn a domain
dependent heuristic as a correction to a domain independent
heuristic.



Representing domain dependent heuristics

• Conventional feed-forward neural networks require fixed input size.
• We encode the grounded state and goal predicates with binary N-d

arrays.
• We represent the heuristic with a neural logic machine.1

1Honghua Dong et al. “Neural Logic Machines”. In: ICLR. 2018.



Learning with Value-Based RL

• We can directly apply non-linear RL methods to learn NLMs.

• RL is terribly slow when rewards are sparse.

Solution: add additional rewards, i.e., reward shaping

Warning: careless shaping will change your problem in undesirable ways.

“Careful what you wish for!”



Potential-based Reward Shaping

Theoretically nice approach: potential-based reward shaping

Define a new reward function:2

r̂(s, a, s′) = r(s, a, s′) + γφ(s′) − φ(s)

• Preserves optimal policies
• Allows us to inject prior knowledge (e.g., domain independent

heuristic)
• “Shaped” value function, V̂ ∗γ , doesn’t preserve state ordering
• To plan, we can retrieve the original value function by

V ∗γ (s) = V̂ ∗γ (s) + φ(s)

2Andrew Y Ng, Daishi Harada, and Stuart J Russell. “Policy Invariance Under
Reward Transformations: Theory and Application to Reward Shaping”. In: ICML.
1999.



Results
• We plan with greedy best-first search using the learned heuristic:

V ∗γ (s) = V̂ ∗γ (s) + φ(s)

• Train on small instances (fast and easy), e.g., 2-6 blocks.
• Evaluate on unseen and larger instances, e.g., 10-50 blocks.
• Showing best and worst domains out of 8 domains total.
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Summary

• We use RL to learn a domain dependent heuristic.

• We generalize over problem instances by using neural logic
machines.

• We leverage domain independent heuristic to accelerate learning
using potential-based reward shaping.

• Potential-based reward shaping allows us to learn corrections to
a classical heuristic, enabling us to plan.

• Our method is capable of learning goal and problem conditioned
heuristics capable of generalizing to larger instances.

Thank you for watching!


