Reinforcement Learning for Classical Planning
Viewing Heuristics as Dense Reward Generators

Clement Gehring*, Masataro Asai*, Rohan Chitnis, Tom Silver, Leslie Pack Kaelbling, Shirin Sohrabi, Michael Katz

Recorded for the PRL workshop, ICAPS 2021
Heuristics are necessary for efficient planning.

• More specific heuristics can better leverage domain/problem structure.

• Domain dependent heuristics are hard to find.

• Problem specific heuristics have limited applications.
Value-based reinforcement learning (RL):
 • can learn **optimal heuristics** (typically problem specific but not always), **but**
 • requires **many interactions** and **a lot of computation**.

Our goal: combine RL and domain **independent** heuristics to efficiently learn domain **dependent** heuristics.
Our two main contributions are:

1. using neural logic machines to learn **goal** and **problem** conditioned heuristics, and

2. using potential-based reward shaping to efficiently learn a domain **dependent** heuristic as a correction to a domain **independent** heuristic.
Representing domain dependent heuristics

- Conventional feed-forward neural networks require fixed input size.
- We encode the grounded **state** and **goal** predicates with binary N-d arrays.
- We represent the heuristic with a **neural logic machine**.¹

¹ Honghua Dong et al. “Neural Logic Machines”. In: *ICLR*. 2018.
• We can directly apply non-linear RL methods to learn NLMs.

• RL is terribly slow when rewards are sparse.

Solution: add additional rewards, i.e., *reward shaping*

Warning: careless shaping will change your problem in undesirable ways.

“Careful what you wish for!”
Theoretically nice approach: potential-based reward shaping

Define a new reward function:

\[\hat{r}(s, a, s') = r(s, a, s') + \gamma \phi(s') - \phi(s) \]

- Preserves optimal policies
- Allows us to inject prior knowledge (e.g., domain independent heuristic)
- “Shaped” value function, \(\hat{V}_\gamma^* \), doesn’t preserve state ordering
- To plan, we can retrieve the original value function by

\[V_\gamma^*(s) = \hat{V}_\gamma^*(s) + \phi(s) \]

• We plan with greedy best-first search using the learned heuristic:

\[V^*_\gamma(s) = \hat{V}^*_\gamma(s) + \phi(s) \]

• Train on small instances (fast and easy), e.g., 2-6 blocks.
• Evaluate on unseen and larger instances, e.g., 10-50 blocks.
• Showing best and worst domains out of 8 domains total.
• We use RL to learn a domain dependent heuristic.

• We generalize over problem instances by using neural logic machines.

• We leverage domain independent heuristic to accelerate learning using potential-based reward shaping.

• Potential-based reward shaping allows us to learn corrections to a classical heuristic, enabling us to plan.

• Our method is capable of learning goal and problem conditioned heuristics capable of generalizing to larger instances.

Thank you for watching!