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e.g. PRL, e.g. [Toyer et al. (2018); Issakkimuthu et al. (2018); Groshev et al. (2018);

Garg et al. (2019); Rivlin et al. (2020); Toyer et al. (2020)]

But what about trust in a learned neural action policy?
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Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

Visualization, e.g. [Gros et al. (2020)]

Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and

Platzer (2018)]

Verification, e.g. [Katz et al. (2017); Gehr et al. (2018); Akintunde et al.

(2018); Vinzent and Hoffmann (2021)]

Testing

e.g. [Julian et al. (2020)] in model-free (blackbox environment) setting
for image-based NN controllers.

But in ICAPS community? None that I know of.

→ “Is this planning?” Some of it surely is (you’ll see).

→ “Is this PRL?” You tell me :-) New workshop Trusted AIP?
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Agenda

1 Context & Notation

2 What is a “Bug”?

3 Bug Confirmation

4 Outlook
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Planning Models Addressed

Everything.

Classical planning

Contingent planning

Oversubscription planning

Discounted-reward/MaxProb MDPs

〈InsertYourFavoriteModelHere〉

→ All we assume is that learning a policy π : states 7→ actions makes
sense, and that a value function V π : states 7→ R can be defined which
captures the quality of π run on s.
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Generic (Cross-Planning-Model) Notation

Qualitative value function:

V π(s) :=


0 no run of π on s reaches the goal
0.5 some runs of π on s reach the goal
1 all runs of π on s reach the goal

Optimal value function:

V ∗(s) :=

{
minπ V

π(s) objective is minimization
maxπ V

π(s) objective is maximization

Generic “is better than” notation: (for the record)

V (s′) ≺ V (s) : iff

{
V (s′) < V (s) objective is minimization
V (s′) > V (s) objective is maximization
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Definition: Bug

Definition (Bug)

A state s is a bug in policy π if ∆ := |V π(s)− V ∗(s)| > 0.

Classical planning, qualitative: ∆ = 1 ≡ π does not reach the goal
on solvable state.

Contingent planning, qualitative: ∆ = 0.5 ≡ π does not reach the
goal on some solvable states.

Oversubscription planning/rewards: ∆ rewards less than possible.

MaxProb MDPs: reach goal with ∆ less probability than possible.

Notes:

Bug-free ⇒ optimal.

This would not be the case for bug := action starting optimal policy.
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Definition: Fuzzing Bug

Definition (Fuzzing Bug)

A state s′ is a fuzzing-bug relative to s if
∆ := |V π(s′)− V ∗(s′)| − |V π(s)− V ∗(s)| > 0.

Observe: (trivial)

1. If s′ is a fuzzing-bug relative to some s, then s′ is a bug.

2. Every bug s′ with non-minimal optimality gap |V π(s)− V ∗(s)| is a
fuzzing-bug relative to some s.

Why?

Natural situation in fuzzing algorithms.

2. does not hold under restrictions on reachability of s′ from s by
such algorithms.

Can this definition help in bug confirmation?
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Bug Confirmation

Definition (Bug Confirmation)

Bug confirmation is the problem of deciding, given a state s, whether
or not s is a bug.

→ Obviously, solving this problem exactly involves solving s optimally.
(I told you some of it is planning, didn’t I?)

So we approximate . . . [Patrik Haslum, AIPS’00]

With H∗ � V ∗(s) and hπ(s) � V π(s) pessimistic approximation of V ∗

and optimistic approximation of V π respectively:

Proposition (Bug Confirmation)

Say that V ∗(s) � H∗(s) and hπ(s) � V π(s). Say that hπ(s) � V ∗(s)
and H∗(s) � V π(s). Then |hπ(s)−H∗(s)| ≤ |V π(s)− V ∗(s)|.

→ Boils down to: “evaluate V π(s), and try to find a better policy for s”.

Jörg Hoffmann PRL’21 Debugging a Policy 12/21
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Bug Confirmation, ctd.

Proposition (Fuzzing Bug Confirmation)

(a) If I∗(s)∩ I∗(s′) = ∅, s′ is a fuzzing-bug relative to s if H∗(s
′) ≺ h∗(s)

and either V π(s′) � V π(s) or |V π(s′)− V π(s)| < |H∗(s′)− h∗(s)|.
(b) s′ is a fuzzing-bug relative to s if V π(s′) � V π(s) and
|V π(s′)− V π(s)| > U∗(s, s

′).

Theorem (It’s All in Vain)

Boils down to “evaluate V π(s), and try to find a better policy for s”.

So what?

Many special cases with “V ∗ oracle” (e.g. all states known to be
solvable; enough time during at testing to run symbolic planner).
In general case, plug in plan-quality improvement algorithms
[Bäckström (1998); Do and Kambhampati (2003); Nakhost and Müller (2010);

Siddiqui and Haslum (2015)].
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′) ≺ h∗(s)

and either V π(s′) � V π(s) or |V π(s′)− V π(s)| < |H∗(s′)− h∗(s)|.
(b) s′ is a fuzzing-bug relative to s if V π(s′) � V π(s) and
|V π(s′)− V π(s)| > U∗(s, s

′).

Theorem (It’s All in Vain)

Boils down to “evaluate V π(s), and try to find a better policy for s”.

So what?

Many special cases with “V ∗ oracle” (e.g. all states known to be
solvable; enough time during at testing to run symbolic planner).
In general case, plug in plan-quality improvement algorithms
[Bäckström (1998); Do and Kambhampati (2003); Nakhost and Müller (2010);

Siddiqui and Haslum (2015)].
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Outlook

Ok, so now let’s actually do this!

Develop fuzzing methods!

Develop bug confirmation paradigms (metamorphosic testing etc)!

See what all this does in all your favorite planning and learning
scenarios!
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Last Slide

Thanks for listening.

Questions?
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