
Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Debugging a Policy:
A Framework for Automatic Action Policy Testing

Marcel Steinmetz, Timo P. Gros, Philippe Heim,
Daniel Höller, Jörg Hoffmann

July 5, 2021

Jörg Hoffmann PRL’21 Debugging a Policy 1/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

e.g. PRL, e.g. [Toyer et al. (2018); Issakkimuthu et al. (2018); Groshev et al. (2018);

Garg et al. (2019); Rivlin et al. (2020); Toyer et al. (2020)]

But what about trust in a learned neural action policy?

Jörg Hoffmann PRL’21 Debugging a Policy 2/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

e.g. PRL, e.g. [Toyer et al. (2018); Issakkimuthu et al. (2018); Groshev et al. (2018);

Garg et al. (2019); Rivlin et al. (2020); Toyer et al. (2020)]

But what about trust in a learned neural action policy?

Jörg Hoffmann PRL’21 Debugging a Policy 2/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

e.g. PRL, e.g. [Toyer et al. (2018); Issakkimuthu et al. (2018); Groshev et al. (2018);

Garg et al. (2019); Rivlin et al. (2020); Toyer et al. (2020)]

But what about trust in a learned neural action policy?

Jörg Hoffmann PRL’21 Debugging a Policy 2/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

e.g. PRL, e.g. [Toyer et al. (2018); Issakkimuthu et al. (2018); Groshev et al. (2018);

Garg et al. (2019); Rivlin et al. (2020); Toyer et al. (2020)]

But what about trust in a learned neural action policy?

Jörg Hoffmann PRL’21 Debugging a Policy 2/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

e.g. PRL, e.g. [Toyer et al. (2018); Issakkimuthu et al. (2018); Groshev et al. (2018);

Garg et al. (2019); Rivlin et al. (2020); Toyer et al. (2020)]

But what about trust in a learned neural action policy?

Jörg Hoffmann PRL’21 Debugging a Policy 2/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

e.g. PRL, e.g. [Toyer et al. (2018); Issakkimuthu et al. (2018); Groshev et al. (2018);

Garg et al. (2019); Rivlin et al. (2020); Toyer et al. (2020)]

But what about trust in a learned neural action policy?

Jörg Hoffmann PRL’21 Debugging a Policy 2/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

Visualization, e.g. [Gros et al. (2020)]

Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and

Platzer (2018)]

Verification, e.g. [Katz et al. (2017); Gehr et al. (2018); Akintunde et al.

(2018); Vinzent and Hoffmann (2021)]

Testing

e.g. [Julian et al. (2020)] in model-free (blackbox environment) setting
for image-based NN controllers.

But in ICAPS community? None that I know of.

→ “Is this planning?” Some of it surely is (you’ll see).

→ “Is this PRL?” You tell me :-) New workshop Trusted AIP?

Jörg Hoffmann PRL’21 Debugging a Policy 3/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

Visualization, e.g. [Gros et al. (2020)]

Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and

Platzer (2018)]

Verification, e.g. [Katz et al. (2017); Gehr et al. (2018); Akintunde et al.

(2018); Vinzent and Hoffmann (2021)]

Testing

e.g. [Julian et al. (2020)] in model-free (blackbox environment) setting
for image-based NN controllers.

But in ICAPS community? None that I know of.

→ “Is this planning?” Some of it surely is (you’ll see).

→ “Is this PRL?” You tell me :-) New workshop Trusted AIP?

Jörg Hoffmann PRL’21 Debugging a Policy 3/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

Visualization, e.g. [Gros et al. (2020)]

Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and

Platzer (2018)]

Verification, e.g. [Katz et al. (2017); Gehr et al. (2018); Akintunde et al.

(2018); Vinzent and Hoffmann (2021)]

Testing

e.g. [Julian et al. (2020)] in model-free (blackbox environment) setting
for image-based NN controllers.

But in ICAPS community? None that I know of.

→ “Is this planning?” Some of it surely is (you’ll see).

→ “Is this PRL?” You tell me :-) New workshop Trusted AIP?

Jörg Hoffmann PRL’21 Debugging a Policy 3/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

Visualization, e.g. [Gros et al. (2020)]

Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and

Platzer (2018)]

Verification, e.g. [Katz et al. (2017); Gehr et al. (2018); Akintunde et al.

(2018); Vinzent and Hoffmann (2021)]

Testing

e.g. [Julian et al. (2020)] in model-free (blackbox environment) setting
for image-based NN controllers.

But in ICAPS community? None that I know of.

→ “Is this planning?”

Some of it surely is (you’ll see).

→ “Is this PRL?” You tell me :-) New workshop Trusted AIP?

Jörg Hoffmann PRL’21 Debugging a Policy 3/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

Visualization, e.g. [Gros et al. (2020)]

Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and

Platzer (2018)]

Verification, e.g. [Katz et al. (2017); Gehr et al. (2018); Akintunde et al.

(2018); Vinzent and Hoffmann (2021)]

Testing

e.g. [Julian et al. (2020)] in model-free (blackbox environment) setting
for image-based NN controllers.

But in ICAPS community? None that I know of.

→ “Is this planning?” Some of it surely is (you’ll see).

→ “Is this PRL?” You tell me :-) New workshop Trusted AIP?

Jörg Hoffmann PRL’21 Debugging a Policy 3/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

Visualization, e.g. [Gros et al. (2020)]

Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and

Platzer (2018)]

Verification, e.g. [Katz et al. (2017); Gehr et al. (2018); Akintunde et al.

(2018); Vinzent and Hoffmann (2021)]

Testing

e.g. [Julian et al. (2020)] in model-free (blackbox environment) setting
for image-based NN controllers.

But in ICAPS community? None that I know of.

→ “Is this planning?” Some of it surely is (you’ll see).

→ “Is this PRL?”

You tell me :-) New workshop Trusted AIP?

Jörg Hoffmann PRL’21 Debugging a Policy 3/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

Visualization, e.g. [Gros et al. (2020)]

Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and

Platzer (2018)]

Verification, e.g. [Katz et al. (2017); Gehr et al. (2018); Akintunde et al.

(2018); Vinzent and Hoffmann (2021)]

Testing

e.g. [Julian et al. (2020)] in model-free (blackbox environment) setting
for image-based NN controllers.

But in ICAPS community? None that I know of.

→ “Is this planning?” Some of it surely is (you’ll see).

→ “Is this PRL?” You tell me :-)

New workshop Trusted AIP?

Jörg Hoffmann PRL’21 Debugging a Policy 3/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Explanation, e.g. [Chakraborti et al. (2019); Agogino et al. (2019)]

Visualization, e.g. [Gros et al. (2020)]

Shielding, e.g. [Könighofer et al. (2017); Alshiekh et al. (2017); Fulton and

Platzer (2018)]

Verification, e.g. [Katz et al. (2017); Gehr et al. (2018); Akintunde et al.

(2018); Vinzent and Hoffmann (2021)]

Testing

e.g. [Julian et al. (2020)] in model-free (blackbox environment) setting
for image-based NN controllers.

But in ICAPS community? None that I know of.

→ “Is this planning?” Some of it surely is (you’ll see).

→ “Is this PRL?” You tell me :-) New workshop Trusted AIP?

Jörg Hoffmann PRL’21 Debugging a Policy 3/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Agenda

1 Context & Notation

2 What is a “Bug”?

3 Bug Confirmation

4 Outlook

Jörg Hoffmann PRL’21 Debugging a Policy 4/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Agenda

1 Context & Notation

2 What is a “Bug”?

3 Bug Confirmation

4 Outlook

Jörg Hoffmann PRL’21 Debugging a Policy 5/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Planning Models Addressed

Everything.

Classical planning

Contingent planning

Oversubscription planning

Discounted-reward/MaxProb MDPs

〈InsertYourFavoriteModelHere〉

→ All we assume is that learning a policy π : states 7→ actions makes
sense, and that a value function V π : states 7→ R can be defined which
captures the quality of π run on s.

Jörg Hoffmann PRL’21 Debugging a Policy 6/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Planning Models Addressed

Everything.

Classical planning

Contingent planning

Oversubscription planning

Discounted-reward/MaxProb MDPs

〈InsertYourFavoriteModelHere〉

→ All we assume is that learning a policy π : states 7→ actions makes
sense, and that a value function V π : states 7→ R can be defined which
captures the quality of π run on s.

Jörg Hoffmann PRL’21 Debugging a Policy 6/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Planning Models Addressed

Everything.

Classical planning

Contingent planning

Oversubscription planning

Discounted-reward/MaxProb MDPs

〈InsertYourFavoriteModelHere〉

→ All we assume is that learning a policy π : states 7→ actions makes
sense, and that a value function V π : states 7→ R can be defined which
captures the quality of π run on s.

Jörg Hoffmann PRL’21 Debugging a Policy 6/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Generic (Cross-Planning-Model) Notation

Qualitative value function:

V π(s) :=


0 no run of π on s reaches the goal
0.5 some runs of π on s reach the goal
1 all runs of π on s reach the goal

Optimal value function:

V ∗(s) :=

{
minπ V

π(s) objective is minimization
maxπ V

π(s) objective is maximization

Generic “is better than” notation: (for the record)

V (s′) ≺ V (s) : iff

{
V (s′) < V (s) objective is minimization
V (s′) > V (s) objective is maximization

Jörg Hoffmann PRL’21 Debugging a Policy 7/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Generic (Cross-Planning-Model) Notation

Qualitative value function:

V π(s) :=


0 no run of π on s reaches the goal
0.5 some runs of π on s reach the goal
1 all runs of π on s reach the goal

Optimal value function:

V ∗(s) :=

{
minπ V

π(s) objective is minimization
maxπ V

π(s) objective is maximization

Generic “is better than” notation: (for the record)

V (s′) ≺ V (s) : iff

{
V (s′) < V (s) objective is minimization
V (s′) > V (s) objective is maximization

Jörg Hoffmann PRL’21 Debugging a Policy 7/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Generic (Cross-Planning-Model) Notation

Qualitative value function:

V π(s) :=


0 no run of π on s reaches the goal
0.5 some runs of π on s reach the goal
1 all runs of π on s reach the goal

Optimal value function:

V ∗(s) :=

{
minπ V

π(s) objective is minimization
maxπ V

π(s) objective is maximization

Generic “is better than” notation: (for the record)

V (s′) ≺ V (s) : iff

{
V (s′) < V (s) objective is minimization
V (s′) > V (s) objective is maximization

Jörg Hoffmann PRL’21 Debugging a Policy 7/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Agenda

1 Context & Notation

2 What is a “Bug”?

3 Bug Confirmation

4 Outlook

Jörg Hoffmann PRL’21 Debugging a Policy 8/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Definition: Bug

Definition (Bug)

A state s is a bug in policy π if ∆ := |V π(s)− V ∗(s)| > 0.

Classical planning, qualitative: ∆ = 1 ≡ π does not reach the goal
on solvable state.

Contingent planning, qualitative: ∆ = 0.5 ≡ π does not reach the
goal on some solvable states.

Oversubscription planning/rewards: ∆ rewards less than possible.

MaxProb MDPs: reach goal with ∆ less probability than possible.

Notes:

Bug-free ⇒ optimal.

This would not be the case for bug := action starting optimal policy.

Jörg Hoffmann PRL’21 Debugging a Policy 9/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Definition: Bug

Definition (Bug)

A state s is a bug in policy π if ∆ := |V π(s)− V ∗(s)| > 0.

Classical planning, qualitative: ∆ = 1 ≡ π does not reach the goal
on solvable state.

Contingent planning, qualitative: ∆ = 0.5 ≡ π does not reach the
goal on some solvable states.

Oversubscription planning/rewards: ∆ rewards less than possible.

MaxProb MDPs: reach goal with ∆ less probability than possible.

Notes:

Bug-free ⇒ optimal.

This would not be the case for bug := action starting optimal policy.

Jörg Hoffmann PRL’21 Debugging a Policy 9/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Definition: Bug

Definition (Bug)

A state s is a bug in policy π if ∆ := |V π(s)− V ∗(s)| > 0.

Classical planning, qualitative: ∆ = 1 ≡ π does not reach the goal
on solvable state.

Contingent planning, qualitative: ∆ = 0.5 ≡ π does not reach the
goal on some solvable states.

Oversubscription planning/rewards: ∆ rewards less than possible.

MaxProb MDPs: reach goal with ∆ less probability than possible.

Notes:

Bug-free ⇒ optimal.

This would not be the case for bug := action starting optimal policy.

Jörg Hoffmann PRL’21 Debugging a Policy 9/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Definition: Bug

Definition (Bug)

A state s is a bug in policy π if ∆ := |V π(s)− V ∗(s)| > 0.

Classical planning, qualitative: ∆ = 1 ≡ π does not reach the goal
on solvable state.

Contingent planning, qualitative: ∆ = 0.5 ≡ π does not reach the
goal on some solvable states.

Oversubscription planning/rewards: ∆ rewards less than possible.

MaxProb MDPs: reach goal with ∆ less probability than possible.

Notes:

Bug-free ⇒ optimal.

This would not be the case for bug := action starting optimal policy.

Jörg Hoffmann PRL’21 Debugging a Policy 9/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Definition: Fuzzing Bug

Definition (Fuzzing Bug)

A state s′ is a fuzzing-bug relative to s if
∆ := |V π(s′)− V ∗(s′)| − |V π(s)− V ∗(s)| > 0.

Observe: (trivial)

1. If s′ is a fuzzing-bug relative to some s, then s′ is a bug.

2. Every bug s′ with non-minimal optimality gap |V π(s)− V ∗(s)| is a
fuzzing-bug relative to some s.

Why?

Natural situation in fuzzing algorithms.

2. does not hold under restrictions on reachability of s′ from s by
such algorithms.

Can this definition help in bug confirmation?

Jörg Hoffmann PRL’21 Debugging a Policy 10/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Definition: Fuzzing Bug

Definition (Fuzzing Bug)

A state s′ is a fuzzing-bug relative to s if
∆ := |V π(s′)− V ∗(s′)| − |V π(s)− V ∗(s)| > 0.

Observe: (trivial)

1. If s′ is a fuzzing-bug relative to some s, then s′ is a bug.

2. Every bug s′ with non-minimal optimality gap |V π(s)− V ∗(s)| is a
fuzzing-bug relative to some s.

Why?

Natural situation in fuzzing algorithms.

2. does not hold under restrictions on reachability of s′ from s by
such algorithms.

Can this definition help in bug confirmation?

Jörg Hoffmann PRL’21 Debugging a Policy 10/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Definition: Fuzzing Bug

Definition (Fuzzing Bug)

A state s′ is a fuzzing-bug relative to s if
∆ := |V π(s′)− V ∗(s′)| − |V π(s)− V ∗(s)| > 0.

Observe: (trivial)

1. If s′ is a fuzzing-bug relative to some s, then s′ is a bug.

2. Every bug s′ with non-minimal optimality gap |V π(s)− V ∗(s)| is a
fuzzing-bug relative to some s.

Why?

Natural situation in fuzzing algorithms.

2. does not hold under restrictions on reachability of s′ from s by
such algorithms.

Can this definition help in bug confirmation?

Jörg Hoffmann PRL’21 Debugging a Policy 10/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Definition: Fuzzing Bug

Definition (Fuzzing Bug)

A state s′ is a fuzzing-bug relative to s if
∆ := |V π(s′)− V ∗(s′)| − |V π(s)− V ∗(s)| > 0.

Observe: (trivial)

1. If s′ is a fuzzing-bug relative to some s, then s′ is a bug.

2. Every bug s′ with non-minimal optimality gap |V π(s)− V ∗(s)| is a
fuzzing-bug relative to some s.

Why?

Natural situation in fuzzing algorithms.

2. does not hold under restrictions on reachability of s′ from s by
such algorithms.

Can this definition help in bug confirmation?

Jörg Hoffmann PRL’21 Debugging a Policy 10/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Definition: Fuzzing Bug

Definition (Fuzzing Bug)

A state s′ is a fuzzing-bug relative to s if
∆ := |V π(s′)− V ∗(s′)| − |V π(s)− V ∗(s)| > 0.

Observe: (trivial)

1. If s′ is a fuzzing-bug relative to some s, then s′ is a bug.

2. Every bug s′ with non-minimal optimality gap |V π(s)− V ∗(s)| is a
fuzzing-bug relative to some s.

Why?

Natural situation in fuzzing algorithms.

2. does not hold under restrictions on reachability of s′ from s by
such algorithms.

Can this definition help in bug confirmation?

Jörg Hoffmann PRL’21 Debugging a Policy 10/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Agenda

1 Context & Notation

2 What is a “Bug”?

3 Bug Confirmation

4 Outlook

Jörg Hoffmann PRL’21 Debugging a Policy 11/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Bug Confirmation

Definition (Bug Confirmation)

Bug confirmation is the problem of deciding, given a state s, whether
or not s is a bug.

→ Obviously, solving this problem exactly involves solving s optimally.
(I told you some of it is planning, didn’t I?)

So we approximate . . . [Patrik Haslum, AIPS’00]

With H∗ � V ∗(s) and hπ(s) � V π(s) pessimistic approximation of V ∗

and optimistic approximation of V π respectively:

Proposition (Bug Confirmation)

Say that V ∗(s) � H∗(s) and hπ(s) � V π(s). Say that hπ(s) � V ∗(s)
and H∗(s) � V π(s). Then |hπ(s)−H∗(s)| ≤ |V π(s)− V ∗(s)|.

→ Boils down to: “evaluate V π(s), and try to find a better policy for s”.

Jörg Hoffmann PRL’21 Debugging a Policy 12/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Bug Confirmation

Definition (Bug Confirmation)

Bug confirmation is the problem of deciding, given a state s, whether
or not s is a bug.

→ Obviously, solving this problem exactly involves solving s optimally.
(I told you some of it is planning, didn’t I?)

So we approximate . . . [Patrik Haslum, AIPS’00]

With H∗ � V ∗(s) and hπ(s) � V π(s) pessimistic approximation of V ∗

and optimistic approximation of V π respectively:

Proposition (Bug Confirmation)

Say that V ∗(s) � H∗(s) and hπ(s) � V π(s). Say that hπ(s) � V ∗(s)
and H∗(s) � V π(s). Then |hπ(s)−H∗(s)| ≤ |V π(s)− V ∗(s)|.

→ Boils down to: “evaluate V π(s), and try to find a better policy for s”.

Jörg Hoffmann PRL’21 Debugging a Policy 12/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Bug Confirmation

Definition (Bug Confirmation)

Bug confirmation is the problem of deciding, given a state s, whether
or not s is a bug.

→ Obviously, solving this problem exactly involves solving s optimally.
(I told you some of it is planning, didn’t I?)

So we approximate . . . [Patrik Haslum, AIPS’00]

With H∗ � V ∗(s) and hπ(s) � V π(s) pessimistic approximation of V ∗

and optimistic approximation of V π respectively:

Proposition (Bug Confirmation)

Say that V ∗(s) � H∗(s) and hπ(s) � V π(s). Say that hπ(s) � V ∗(s)
and H∗(s) � V π(s). Then |hπ(s)−H∗(s)| ≤ |V π(s)− V ∗(s)|.

→ Boils down to: “evaluate V π(s), and try to find a better policy for s”.

Jörg Hoffmann PRL’21 Debugging a Policy 12/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Bug Confirmation

Definition (Bug Confirmation)

Bug confirmation is the problem of deciding, given a state s, whether
or not s is a bug.

→ Obviously, solving this problem exactly involves solving s optimally.
(I told you some of it is planning, didn’t I?)

So we approximate . . . [Patrik Haslum, AIPS’00]

With H∗ � V ∗(s) and hπ(s) � V π(s) pessimistic approximation of V ∗

and optimistic approximation of V π respectively:

Proposition (Bug Confirmation)

Say that V ∗(s) � H∗(s) and hπ(s) � V π(s). Say that hπ(s) � V ∗(s)
and H∗(s) � V π(s). Then |hπ(s)−H∗(s)| ≤ |V π(s)− V ∗(s)|.

→ Boils down to: “evaluate V π(s), and try to find a better policy for s”.

Jörg Hoffmann PRL’21 Debugging a Policy 12/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Bug Confirmation, ctd.

Proposition (Fuzzing Bug Confirmation)

(a) If I∗(s)∩ I∗(s′) = ∅, s′ is a fuzzing-bug relative to s if H∗(s
′) ≺ h∗(s)

and either V π(s′) � V π(s) or |V π(s′)− V π(s)| < |H∗(s′)− h∗(s)|.
(b) s′ is a fuzzing-bug relative to s if V π(s′) � V π(s) and
|V π(s′)− V π(s)| > U∗(s, s

′).

Theorem (It’s All in Vain)

Boils down to “evaluate V π(s), and try to find a better policy for s”.

So what?

Many special cases with “V ∗ oracle” (e.g. all states known to be
solvable; enough time during at testing to run symbolic planner).
In general case, plug in plan-quality improvement algorithms
[Bäckström (1998); Do and Kambhampati (2003); Nakhost and Müller (2010);

Siddiqui and Haslum (2015)].

Jörg Hoffmann PRL’21 Debugging a Policy 13/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Bug Confirmation, ctd.

Proposition (Fuzzing Bug Confirmation)

(a) If I∗(s)∩ I∗(s′) = ∅, s′ is a fuzzing-bug relative to s if H∗(s
′) ≺ h∗(s)

and either V π(s′) � V π(s) or |V π(s′)− V π(s)| < |H∗(s′)− h∗(s)|.
(b) s′ is a fuzzing-bug relative to s if V π(s′) � V π(s) and
|V π(s′)− V π(s)| > U∗(s, s

′).

Theorem (It’s All in Vain)

Boils down to “evaluate V π(s), and try to find a better policy for s”.

So what?

Many special cases with “V ∗ oracle” (e.g. all states known to be
solvable; enough time during at testing to run symbolic planner).
In general case, plug in plan-quality improvement algorithms
[Bäckström (1998); Do and Kambhampati (2003); Nakhost and Müller (2010);

Siddiqui and Haslum (2015)].

Jörg Hoffmann PRL’21 Debugging a Policy 13/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Bug Confirmation, ctd.

Proposition (Fuzzing Bug Confirmation)

(a) If I∗(s)∩ I∗(s′) = ∅, s′ is a fuzzing-bug relative to s if H∗(s
′) ≺ h∗(s)

and either V π(s′) � V π(s) or |V π(s′)− V π(s)| < |H∗(s′)− h∗(s)|.
(b) s′ is a fuzzing-bug relative to s if V π(s′) � V π(s) and
|V π(s′)− V π(s)| > U∗(s, s

′).

Theorem (It’s All in Vain)

Boils down to “evaluate V π(s), and try to find a better policy for s”.

So what?

Many special cases with “V ∗ oracle” (e.g. all states known to be
solvable; enough time during at testing to run symbolic planner).
In general case, plug in plan-quality improvement algorithms
[Bäckström (1998); Do and Kambhampati (2003); Nakhost and Müller (2010);

Siddiqui and Haslum (2015)].
Jörg Hoffmann PRL’21 Debugging a Policy 13/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Agenda

1 Context & Notation

2 What is a “Bug”?

3 Bug Confirmation

4 Outlook

Jörg Hoffmann PRL’21 Debugging a Policy 14/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Outlook

Ok, so now let’s actually do this!

Develop fuzzing methods!

Develop bug confirmation paradigms (metamorphosic testing etc)!

See what all this does in all your favorite planning and learning
scenarios!

Jörg Hoffmann PRL’21 Debugging a Policy 15/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Outlook

Ok, so now let’s actually do this!

Develop fuzzing methods!

Develop bug confirmation paradigms (metamorphosic testing etc)!

See what all this does in all your favorite planning and learning
scenarios!

Jörg Hoffmann PRL’21 Debugging a Policy 15/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

Last Slide

Thanks for listening.

Questions?

Jörg Hoffmann PRL’21 Debugging a Policy 16/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

References I

Adrian Agogino, Ritchie Lee, and Dimitra Giannakopoulou. Challenges of explaining
control. In 2nd ICAPS Workshop on Explainable Planning (XAIP’19), 2019.

Michael Akintunde, Alessio Lomuscio, Lalit Maganti, and Edoardo Pirovano.
Reachability analysis for neural agent-environment systems. In 16th International
Conference on Principles of Knowledge Representation and Reasoning (KR’18),
pages 184–193, 2018.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. Safe reinforcement learning via shielding. CoRR,
abs/1708.08611, 2017.

Christer Bäckström. Computational aspects of reordering plans. Journal of Artificial
Intelligence Research, 9:99–137, 1998.

Tathagata Chakraborti, Anagha Kulkarni, Sarath Sreedharan, David E. Smith, and
Subbarao Kambhampati. Explicability? legibility? predictability? transparency?
privacy? security? the emerging landscape of interpretable agent behavior. In
Proceedings of the 29th International Conference on Automated Planning and
Scheduling (ICAPS’19), pages 86–96. AAAI Press, 2019.

Jörg Hoffmann PRL’21 Debugging a Policy 17/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

References II

Minh. B. Do and Subbarao Kambhampati. Improving the temporal flexibility of
position constrained metric temporal plans. In Proceedings of the 13th International
Conference on Automated Planning and Scheduling (ICAPS’03), pages 42–51, 2003.

Nathan Fulton and Andreé Platzer. Safe reinforcement learning via formal methods:
Toward safe control through proof and learning. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI’18), pages 6485–6492. AAAI Press,
2018.

Sankalp Garg, Aniket Bajpai, and Mausam. Size independent neural transfer for RDDL
planning. In Proceedings of the 29th International Conference on Automated
Planning and Scheduling (ICAPS’19), pages 631–636. AAAI Press, 2019.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin T. Vechev. AI2: Safety and robustness certification of neural
networks with abstract interpretation. In Proceedings of the IEEE Symposium on
Security and Privacy 2018, pages 3–18. IEEE Computer Society, 2018.

Timo P. Gros, David Groß, Stefan Gumhold, Jrg Hoffmann, Michaela Klauck, and
Marcel Steinmetz. TraceVis: Towards visualization for deep statistical model
checking. In Proceedings of the 9th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA’20), 2020.

Jörg Hoffmann PRL’21 Debugging a Policy 18/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

References III

Edward Groshev, Maxwell Goldstein, Aviv Tamar, Siddharth Srivastava, and Pieter
Abbeel. Learning generalized reactive policies using deep neural networks. In
Proceedings of the 28th International Conference on Automated Planning and
Scheduling (ICAPS’18), pages 408–416. AAAI Press, 2018.

Murugeswari Issakkimuthu, Alan Fern, and Prasad Tadepalli. Training deep reactive
policies for probabilistic planning problems. In Proceedings of the 28th International
Conference on Automated Planning and Scheduling (ICAPS’18), pages 422–430.
AAAI Press, 2018.

Kyle D. Julian, Ritchie Lee, and Mykel J. Kochenderfer. Validation of image-based
neural network controllers through adaptive stress testing. In 23rd IEEE
International Conference on Intelligent Transportation Systems (ITSC’20), pages
1–7, 2020.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks. In Proceedings
of the 29th International Conference Computer Aided Verification (CAV’17), volume
10426 of Lecture Notes in Computer Science, pages 97–117. Springer, 2017.

Jörg Hoffmann PRL’21 Debugging a Policy 19/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

References IV

Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura Humphrey, Robert
Könighofer, Ufuk Topcu, and Chao Wang. Shield synthesis. Formal Methods in
System Design, 51(2):332–361, 2017.

Hootan Nakhost and Martin Müller. Action elimination and plan neighborhood graph
search: Two algorithms for plan improvement. In Proceedings of the 20th
International Conference on Automated Planning and Scheduling (ICAPS’10),
pages 121–128, 2010.

Or Rivlin, Tamir Hazan, and Erez Karpas. Generalized planning with deep
reinforcement learning. In ICAPS 2020 Workshop on Bridging the Gap Between AI
Planning and Reinforcement Learning (PRL), pages 16–24, 2020.

Fazlul Hasan Siddiqui and Patrik Haslum. Continuing plan quality optimisation.
Journal of Artificial Intelligence Research, 54:369–435, 2015.

Sam Toyer, Felipe Trevizan, Sylvie Thiebaux, and Lexing Xie. Action schema
networks: Generalised policies with deep learning. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI’18), 2018.

Sam Toyer, Sylvie Thiébaux, Felipe W. Trevizan, and Lexing Xie. Asnets: Deep
learning for generalised planning. Journal of Artificial Intelligence Research,
68:1–68, 2020.

Jörg Hoffmann PRL’21 Debugging a Policy 20/21

Context & Notation What is a “Bug”? Bug Confirmation Outlook References

References V

Marcel Vinzent and Jörg Hoffmann. Neural network action policy verification via
predicate abstraction. In Proceedings of the ICAPS Workshop on Bridging the Gap
Between AI Planning and Reinforcement Learning (PRL’21), 2021.

Jörg Hoffmann PRL’21 Debugging a Policy 21/21

	Context & Notation
	

	What is a ``Bug''?
	

	Bug Confirmation
	

	Outlook
	

	
	References

