AlwaysSafe: Reinforcement Learning without Safety Constraint Violations during Training¹

Thiago D. Simão*

Nils Jansen[†]

Matthijs Spaan*

*Delft University of Technology †Radboud University, Nijmegen

Planning and Reinforcement Learning Workshop

Aug 2021

 $^{^{1}\}mathsf{Extended}$ abstract of a paper published at AAMAS-21

2 Simulations

Gap between Research and Real-world **△**⇄ⓒ

Simulations

Real-world tasks

Challenges to bring reinforcement learning from research to real-world applications²:

Safety constraints Off-line training Limited interactions with the environment Partially observable tasks Explanability

²G. Dulac-Arnold et al. "Challenges of real-world reinforcement learning: definitions, benchmarks and analysis". In: Machine Learning (2021)

Challenges to bring reinforcement learning from research to real-world applications²:

Safety constraints

Off-line training Limited interactions with the environment Partially observable tasks Explanability

²G. Dulac-Arnold et al. "Challenges of real-world reinforcement learning: definitions, benchmarks and analysis". In: Machine Learning (2021)

- P : passenger info
- $\textcircled{\ensuremath{\mathbb C}}$: taxi location
- (b) : battery
- : passenger delivered

- P : passenger info
- $\textcircled{\ensuremath{\mathbb C}}$: taxi location
- $\textcircled{b}: \mathsf{battery}$
- : passenger delivered
- $\circledast: \mathsf{out} \ \mathsf{of} \ \mathsf{power}$

Typical RL

$$\mathsf{MDP^3:}\ \mathcal{M} = \langle \mathbb{S}, \mathbb{A}, \mathcal{P}, \mathcal{R}, \mu \rangle$$

$$\max_{\pi} \ V^{\pi}_{R}(\mu) = \mathbb{E}_{\pi} \left[\sum_{t=1}^{H} r_t \mid \mu
ight]$$

³M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. 1st. John Wiley & Sons, Inc., 1994

Constrained RL

 $\mathsf{CMDP^4}:\,\mathcal{M}=\langle\mathbb{S},\mathbb{A},\mathcal{P},\mathcal{R},\mu,\mathcal{C},\hat{c}\rangle$

$$\max_{\pi} V_{R}^{\pi}(\mu) = \mathbb{E}_{\pi} \left[\sum_{t=1}^{H} r_{t} \mid \mu \right]$$

s.t.
$$\underbrace{V_{C}^{\pi}(\mu) = \mathbb{E}_{\pi} \left[\sum_{t=1}^{H} c_{t} \mid \mu \right] \leq \hat{c}}_{\text{Safety constraint}}$$

⁴E. Altman. Constrained Markov Decision Processes. Vol. 7. CRC Press, 1999

Constrained RL

 $\mathsf{CMDP^4}: \, \mathcal{M} = \langle \mathbb{S}, \mathbb{A}, \mathcal{P}, \mathcal{R}, \mu, \mathcal{C}, \hat{c} \rangle$

⁴E. Altman. Constrained Markov Decision Processes. Vol. 7. CRC Press, 1999

Constrained RL

 $\mathsf{CMDP^4}: \, \mathcal{M} = \langle \mathbb{S}, \mathbb{A}, \mathcal{P}, \mathcal{R}, \mu, \mathcal{C}, \hat{c} \rangle$

⁴E. Altman. Constrained Markov Decision Processes. Vol. 7. CRC Press, 1999

$$\max_{x} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) R(s,a) \quad \text{ s.t. } \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) C(s,a) \le \hat{c}$$

$$x \text{ respects } T$$

$$\max_{x} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) R(s,a) \quad \text{s.t.} \quad \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) C(s,a) \le \hat{c}$$

$$x \text{ respects } T$$

$$\max_{x} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) R(s,a) \quad \text{s.t.} \quad \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) C(s,a) \le \hat{c}$$

$$x \text{ respects } T$$

$$\max_{x} \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) R(s, a) \quad \text{ s.t. } \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) C(s, a) \le \hat{c}$$

$$x \text{ respects } \mathcal{T}$$

$$\max_{x} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) R(s,a) \quad \text{ s.t. } \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) C(s,a) \le \hat{c}$$

$$x \text{ respects } T$$

$$\Sigma = \left[\left. T' \left| \| \hat{\mathcal{T}}(\cdot \mid s, a) - \mathcal{T}'(\cdot \mid s, a) \| \le e_{\delta}^{\mathcal{T}}(s, a)
ight] \Rightarrow \mathbb{P}(\mathcal{T} \in \Sigma) \ge 1 - \delta$$

$$\max_{x,T'} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \quad \text{ s. t. } \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{C}(s,a) - e_{\delta}^{C}(s,a) \right) \leq \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

⁵Y. Efroni et al. "Exploration-Exploitation in Constrained MDPs". In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020

$$\Sigma = \left[\left. \mathcal{T}' \right| \| \hat{\mathcal{T}}(\cdot \mid s, a) - \mathcal{T}'(\cdot \mid s, a) \| \leq e_{\delta}^{\mathcal{T}}(s, a) \right] \Rightarrow \mathbb{P}(\mathcal{T} \in \Sigma) \geq 1 - \delta$$

$$\max_{x,T'} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \quad \text{ s. t. } \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{C}(s,a) - e_{\delta}^{C}(s,a) \right) \leq \hat{c}$$
$$x \text{ respects } T'$$
$$T' \in \Sigma$$

⁵Y. Efroni et al. "Exploration-Exploitation in Constrained MDPs". In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020

$$\Sigma = \left[\left. \mathcal{T}' \left| \| \hat{\mathcal{T}}(\cdot \mid s, a) - \mathcal{T}'(\cdot \mid s, a) \| \le e_{\delta}^{\mathcal{T}}(s, a)
ight] \Rightarrow \mathbb{P}(\mathcal{T} \in \Sigma) \ge 1 - \delta$$

$$\max_{x,T'} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \quad \text{s.t.} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{C}(s,a) - e_{\delta}^{C}(s,a) \right) \leq \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

⁵Y. Efroni et al. "Exploration-Exploitation in Constrained MDPs". In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020

$$\Sigma = \left[\left. \mathcal{T}' \left| \| \hat{\mathcal{T}}(\cdot \mid s, a) - \mathcal{T}'(\cdot \mid s, a) \| \le e_{\delta}^{\mathcal{T}}(s, a)
ight] \Rightarrow \mathbb{P}(\mathcal{T} \in \Sigma) \ge 1 - \delta$$

$$\max_{x,T'} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \qquad \text{s.t.} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{C}(s,a) - e_{\delta}^{C}(s,a) \right) \leq \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

⁵Y. Efroni et al. "Exploration-Exploitation in Constrained MDPs". In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020

 $DptCMDP^5$ optimistically chooses a transition function within the uncertainty set, uses the lower bound of the reward function and the upper bound of the cost function.

$$\Sigma = \left[\left. T' \left| \| \hat{\mathcal{T}}(\cdot \mid s, a) - \mathcal{T}'(\cdot \mid s, a) \| \le e_{\delta}^{\mathcal{T}}(s, a)
ight] \Rightarrow \mathbb{P}(\mathcal{T} \in \Sigma) \ge 1 - \delta$$

$$\max_{x,T'} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \quad \text{ s. t. } \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{C}(s,a) - e_{\delta}^{C}(s,a) \right) \leq \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

Bounded regret in terms of performance and safety but policy might be unsafe.

⁵Y. Efroni et al. "Exploration-Exploitation in Constrained MDPs". In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020

Not Everything is Relevant for Safety

Factored MDP with cost function related to safety

Not Everything is Relevant for Safety

Factored MDP with cost function related to safety

Abstract factored MDP with safety dynamics

Cost-model-irrelevant Abstraction

$$\begin{split} \bar{\mathcal{M}}_{\phi} = \langle \bar{\mathbb{S}}, \mathbb{A}, \bar{P}, \bar{R}, \bar{\mu}, \bar{\mathcal{C}}, \hat{c} \rangle \\ & & & & \\ \hline \phi : \mathbb{S} \to \bar{\mathbb{S}} \\ & & \\ & & \\ \mathcal{M} = \langle \mathbb{S}, \mathbb{A}, P, R, \mu, \mathcal{C}, \hat{c} \rangle \end{split}$$

$$V^{\pi,ar{\mathcal{M}}_\phi}_{ar{\mathcal{C}}}(ar{\mu}) = V^{\pi,\mathcal{M}}_{\mathcal{C}}(\mu)$$

 ϕ preserves the expected cost of the policy.

Cost-model-irrelevant Abstraction

$$\begin{split} \bar{\mathcal{M}}_{\phi} = \langle \bar{\mathbb{S}}, \mathbb{A}, \bar{P}, \bar{R}, \bar{\mu}, \bar{\mathcal{C}}, \hat{c} \rangle \\ & & & & \\ \hline \phi : \mathbb{S} \to \bar{\mathbb{S}} \\ & & \\ & & \\ \mathcal{M} = \langle \mathbb{S}, \mathbb{A}, P, R, \mu, \mathcal{C}, \hat{c} \rangle \end{split}$$

$$V^{\pi, ar{\mathcal{M}}_\phi}_{ar{\mathcal{C}}}(ar{\mu}) = V^{\pi, \mathcal{M}}_{\mathcal{C}}(\mu)$$

 ϕ preserves the expected cost of the policy.

We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x,T',z} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \quad \text{s.t.} \quad \sum_{\bar{s},a} \sum_{t=1}^{H} z(\bar{s},a,t) C(\bar{s},a) \leq \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

$$z \text{ respects } \bar{T}$$

$$z(\bar{s},a,t) = \sum_{s \in \phi^{-1}(\bar{s})} x(s,a,t) \quad \forall \bar{s}, a, t \in \mathbb{R}$$

t

We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x,T',z} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \quad \text{s.t.} \sum_{\bar{s},a} \sum_{t=1}^{H} z(\bar{s},a,t) C(\bar{s},a) \leq \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

$$z \text{ respects } \bar{T}$$

$$z(\bar{s},a,t) = \sum_{s \in \phi^{-1}(\bar{s})} x(s,a,t) \quad \forall \bar{s}, a, t$$

We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x,T',z} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \quad \text{s.t.} \quad \sum_{\overline{s},a} \sum_{t=1}^{H} z(\overline{s},a,t) C(\overline{s},a) \le \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

$$z \text{ respects } \overline{T}$$

$$z(\overline{s},a,t) = \sum_{s \in \phi^{-1}(\overline{s})} x(s,a,t) \quad \forall \overline{s}, a, t$$

We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x,T',z} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \quad \text{s.t.} \sum_{\bar{s},a} \sum_{t=1}^{H} z(\bar{s},a,t) C(\bar{s},a) \leq \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

$$z \text{ respects } \bar{T}$$

$$z(\bar{s},a,t) = \sum_{s \in \phi^{-1}(\bar{s})} x(s,a,t) \quad \forall \bar{s}, a, t$$

We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x,T',z} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \qquad \text{s.t.} \quad \sum_{\bar{s},a} \sum_{t=1}^{H} z(\bar{s},a,t) C(\bar{s},a) \leq \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

$$z \text{ respects } \bar{T}$$

$$z(\bar{s},a,t) = \sum_{s \in \phi^{-1}(\bar{s})} x(s,a,t) \quad \forall \bar{s}, a, t$$

• z induces an abstract policy π_A .

We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x,T',z} \sum_{s,a} \sum_{t=1}^{H} x(s,a,t) \left(\hat{R}(s,a) + e_{\delta}^{R}(s,a) \right) \quad \text{s.t.} \sum_{\bar{s},a} \sum_{t=1}^{H} z(\bar{s},a,t) C(\bar{s},a) \leq \hat{c}$$

$$x \text{ respects } T'$$

$$T' \in \Sigma$$

$$z \text{ respects } \bar{T}$$

$$z(\bar{s},a,t) = \sum_{s \in \phi^{-1}(\bar{s})} x(s,a,t) \quad \forall \bar{s}, a, t$$

- z induces an abstract policy π_A .
- x induces a ground policy π_G .

t

• The abstract policy π_A is safe

• The abstract policy π_A is safe but might be suboptimal.

- The abstract policy π_A is safe but might be suboptimal.
- The ground policy π_G can reach optimality

- The abstract policy π_A is safe but might be suboptimal.
- The ground policy π_G can reach optimality but has no safety guarantees.

Dynamically adjusting the safety constraint to ensure safety

Dynamically adjusting the safety constraint to ensure safety

1
$$\hat{c}_t \leftarrow \beta_t \hat{c}$$

2 compute π_α according to \hat{c}_t
3 $\beta_t \leftarrow \beta_{t-1} - \alpha \frac{\max\{\max_{T' \in \Sigma} V_C(\pi_\alpha) - \hat{c}, 0\}}{\hat{c}}$

Dynamically adjusting the safety constraint to ensure safety

Dynamically adjusting the safety constraint to ensure safety

Empirical Results p = 0.9 and $\hat{c} = 0.1$

Empirical Results p = 0.9 and $\hat{c} = 0.1$

Empirical Results p = 0.9 and $\hat{c} = 0.1$

Take Home Message

Constrained RL

- models safety requirements explicitly and
- avoids reward engineering/hacking.

Take Home Message

Constrained RL

- models safety requirements explicitly and
- avoids reward engineering/hacking.

The algorithm proposed

- is always safe during the learning process (with high probability),
- seamlessly switches from a conservative policy to a greedy policy and
- can explore optimistically.

Take Home Message

Constrained RL

- models safety requirements explicitly and
- avoids reward engineering/hacking.

The algorithm proposed

- is always safe during the learning process (with high probability),
- seamlessly switches from a conservative policy to a greedy policy and
- can explore optimistically.

Thank you!

