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Challenges for RL A& £z 28

Challenges to bring reinforcement learning from research to real-world applications?:

o Safety constraints
S Off-line training
] Limited interactions with the environment
R Partially observable tasks
) Explanability
2G. Dulac-Arnold et al. “Challenges of real-world reinforcement learning: definitions, benchmarks and analysis”. |n: Machine Learning (2021)
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Electric Taxi  ¢m B¢

® : passenger info

® : taxi location
® : battery
a FJ & : passenger delivered
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Typical RL

MDP3: M = (S, A, P, R, )

Agent
s 4r

max Vi (1) = Z re | p : ‘
sl rl

Environment

3M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. 1st. John Wiley & Sons, Inc., 1994
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Constrained RL

CMDP4 M = <S7 A’ P’ R’ /"1’7 C? 6>

Agent
H Y
S r C
max Ve(p) =Ex Zrt | ,u] al !
s' | |c
H .
Environment
s.t. VE(p) = ﬂ[thLu] <¢é

Safety constramt

4E. Altman. Constrained Markov Decision Processes. \/o| 7. CRC Press 1090
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Constrained RL
CMDP* M = (S,A,P,R, 11, C, &)

H A
S r (¢
S T

s' |r' |c

Environment
<é

v
Safety constraint

4E. Altman. Constrained Markov Decision Processes. \/o| 7. CRC Press 1090
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Solving a CMDP

Occupancy measure of state and action: x(s,a,t) =E[s; = s, a; = a]

H H
m)?xz Zx(s, a,t)R(s,a) s.t. ZZX(S, a, t)C(s,a) <&

s,a t=1 s,a t=1

X respects T
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Optimism in Face of Uncertainty

OptCMDP® optimistically chooses a transition function within the uncertainty set,
uses the lower bound of the reward function and the upper bound of the cost function.

r=|T

17 1sa) = T'(Isa)l <ef(s,a)] = H(Ter) 214

r)u(rjs]_)/( ZZx(sat ( (s,a) + e (s, a)) s. t. ZZ sat)( (s,a) — e(;c(s,a))gé

s,a t=1 s,a t=1
x respects T’
T cx

5Y. Efroni et al. “Exploration-Exploitation in Constrained MDPs". |n: [CIML Workshop on Theoretical Foundations of Reinforcement Learning. 2020
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OptCMDP® optimistically chooses a transition function within the uncertainty set,
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17 1sa) = T'(Isa)l <ef(s,a)] = H(Ter) 214
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T cx

Bounded regret in terms of performance and safety but policy might be unsafe.

5Y. Efroni et al. “Exploration-Exploitation in Constrained MDPs". |n: [CIML Workshop on Theoretical Foundations of Reinforcement Learning. 2020
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Not Everything is Relevant for Safety

Factored MDP with cost
function related to safety
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Not Everything is Relevant for Safety

© ©
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Factored MDP with cost Abstract factored MDP with
function related to safety safety dynamics
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Cost-model-irrelevant Abstraction

N 7r,/\/_l - T,
0528 Ve (@) = vaM ()

¢ preserves the expected cost of the policy.
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Cost-model-irrelevant Abstraction

My =(S,A, PR, i, C,e¢)
A
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AbsOptCMDP

We can compute a safe policy in the abstract CMDP using a new variable .

XrynTal>,< ZZx(sat< sa)+e5(sa)> s. t. ZZz(sat (5,a) < ¢

s,a t=1 5,a t=1
X respects T’
T'ex
z respects T

z(5,a,t) = Z x(s,a,t) VS5, a,t
s€p=1(3)
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We May Need Everything to Compute an Optimal Policy

ﬁ' O—0
&1 F ONra0)
s
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H' OO0
Al p 2O
0

® The abstract policy w4 is safe but might be suboptimal.

® The ground policy m¢ can reach optimality
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We May Need Everything to Compute an Optimal Policy

ﬁ' O—0
&1 F 2O
(6

® The abstract policy w4 is safe but might be suboptimal.

® The ground policy m¢ can reach optimality but has no safety guarantees.
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AlwaysSafe 7,

Dynamically adjusting the safety constraint to ensure safety

B=1
Co=C

Ve
Search for policy that is safe in the whole uncertainty set.

O ¢+ B

® compute m, according to &
max{maxyscy Vc(ma)—¢€,0}

© Ot + Pr1—« =
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AlwaysSafe 7,

Dynamically adjusting the safety constraint to ensure safety

p=1 p=09 B =085 Safe Policy

A /\ .

>

Gy=¢ ¢ ¢

JI-.JLJL

Search for policy that is safe in the whole uncertainty set.
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Empirical Results
p=09and ¢=0.1
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Empirical Results
p=09and ¢=0.1

Factored CMDP
0.14 — OptCMDP — AlwaysSafe 4 0.241
' —— AbsOptCMDP 7; = AlwaysSafe 7,
0.224
Expected
Expected Return 0.20 7 ‘
Cost

0.184
0.16 = opti

0.06 - cost bound optimal return
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Take Home Message

Constrained RL
® models safety requirements explicitly and

® avoids reward engineering/hacking.
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The algorithm proposed
® is always safe during the learning process (with high probability),
® seamlessly switches from a conservative policy to a greedy policy and

® can explore optimistically.
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Constrained RL
models safety requirements explicitly and
avoids reward engineering/hacking.

The algorithm proposed
is always safe during the learning process (with high probability),
seamlessly switches from a conservative policy to a greedy policy and
can explore optimistically.

Thank you!
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