AlwaysSafe: Reinforcement Learning without Safety Constraint Violations during Training

Thiago D. Simão*
Nils Jansen†
Matthijs Spaan*

*Delft University of Technology
†Radboud University, Nijmegen

Planning and Reinforcement Learning Workshop
Aug 2021

1Extended abstract of a paper published at AAMAS-21
Gap between Research and Real-world

Simulations
Gap between Research and Real-world

Simulations

Real-world tasks
Challenges to bring reinforcement learning from research to real-world applications:

- Safety constraints
- Off-line training
- Limited interactions with the environment
- Partially observable tasks
- Explanability

G. Dulac-Arnold et al. “Challenges of real-world reinforcement learning: definitions, benchmarks and analysis”. In: Machine Learning (2021)
Challenges to bring reinforcement learning from research to real-world applications:\(^2\):

- **Safety constraints**
- Off-line training
- Limited interactions with the environment
- Partially observable tasks
- Explanability

Electric Taxi

__: passenger info
__: taxi location
__: battery
__: passenger delivered
Electric Taxi

�이글: passenger info
①: taxi location
⑥: battery
◇: passenger delivered
◇: out of power
Typical RL

MDP\(^3\): \(\mathcal{M} = \langle S, A, P, R, \mu \rangle\)

\[
\max_{\pi} V^\pi_R(\mu) = \mathbb{E}_\pi \left[\sum_{t=1}^{H} r_t \mid \mu \right]
\]

Constrained RL

CMDP\(^4\): \(\mathcal{M} = \langle S, A, P, R, \mu, C, \hat{c} \rangle\)

\[
\max_{\pi} V^\pi_R(\mu) = E_{\pi} \left[\sum_{t=1}^{H} r_t \mid \mu \right]
\]

s.t. \(V^\pi_C(\mu) = E_{\pi} \left[\sum_{t=1}^{H} c_t \mid \mu \right] \leq \hat{c} \)

Constrained RL

CMDP\(^4\): \(\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, P, R, \mu, C, \hat{c} \rangle \)

\[
\max_{\pi} V_R^\pi(\mu) = \mathbb{E}_\pi \left[\sum_{t=1}^{H} r_t \mid \mu \right]
\]

s.t. \(V_C^\pi(\mu) = \mathbb{E}_\pi \left[\sum_{t=1}^{H} c_t \mid \mu \right] \leq \hat{c} \)

Constrained RL

CMDP\(^4\): \(\mathcal{M} = \langle \mathbb{S}, \mathbb{A}, P, R, \mu, C, \hat{c} \rangle\)

\[
\max_\pi V^\pi_R(\mu) = \mathbb{E}_\pi \left[\sum_{t=1}^{H} r_t \mid \mu \right] \\
\text{s.t. } V^\pi_C(\mu) = \mathbb{E}_\pi \left[\sum_{t=1}^{H} c_t \mid \mu \right] \leq \hat{c}
\]

Solving a CMDP

Occupancy measure of state and action: \(x(s, a, t) = \mathbb{E}[s_t = s, a_t = a] \)

\[
\max_x \sum_{s,a} \sum_{t=1}^H x(s, a, t) R(s, a) \quad \text{s.t.} \quad \sum_{s,a} \sum_{t=1}^H x(s, a, t) C(s, a) \leq \hat{c}
\]

\(x \) respects \(T \)
Solving a CMDP

Occupancy measure of state and action:

\[x(s, a, t) = \mathbb{E}[s_t = s, a_t = a] \]

\[
\max_x \sum_{s,a} \sum_{t=1}^H x(s, a, t) R(s, a) \quad \text{s.t.} \quad \sum_{s,a} \sum_{t=1}^H x(s, a, t) C(s, a) \leq \hat{c} \]

\[x \text{ respects } T \]
Solving a CMDP

Occupancy measure of state and action: $x(s, a, t) = \mathbb{E}[s_t = s, a_t = a]$

$$\max_x \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) R(s, a) \quad \text{s.t.} \quad \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) C(s, a) \leq \hat{c}$$

x respects T
Solving a CMDP

Occupancy measure of state and action: \(x(s, a, t) = \mathbb{E}[s_t = s, a_t = a] \)

\[
\max_x \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) R(s, a) \quad \text{s.t.} \quad \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) C(s, a) \leq \hat{c}
\]

\(x \) respects \(T \)
Solving a CMDP

Occupancy measure of state and action: \(x(s, a, t) = \mathbb{E}[s_t = s, a_t = a] \)

\[
\max_x \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) R(s, a) \quad \text{s.t.} \quad \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) C(s, a) \leq \hat{c} \\
\text{x respects } T
\]
Optimism in Face of Uncertainty

OptCMDP\(^5\) optimistically chooses a transition function within the uncertainty set, uses the lower bound of the reward function and the upper bound of the cost function.

\[
\Sigma = \left[T' \bigg| \| \hat{T}(\cdot | s, a) - T'(\cdot | s, a) \| \leq e_\delta^T(s, a) \right] \Rightarrow \mathbb{P}(T \in \Sigma) \geq 1 - \delta
\]

\[
\max_{x, T'} \sum_{s, a} \sum_{t=1}^H x(s, a, t) \left(\hat{R}(s, a) + e_\delta^R(s, a) \right) \quad \text{s.t.} \quad \sum_{s, a} \sum_{t=1}^H x(s, a, t) \left(\hat{C}(s, a) - e_\delta^C(s, a) \right) \leq \hat{c}
\]

\[
x \text{ respects } T'
\]

\[
T' \in \Sigma
\]

\(^5\)Y. Efroni et al. “Exploration-Exploitation in Constrained MDPs”. In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020
Optimism in Face of Uncertainty

OptCMDP5 optimistically chooses a transition function within the uncertainty set, uses the lower bound of the reward function and the upper bound of the cost function.

\[\Sigma = \left[T' \mid \| \hat{T}(\cdot \mid s, a) - T'(\cdot \mid s, a) \| \leq e_\delta^T(s, a) \right] \Rightarrow \mathbb{P}(T \in \Sigma) \geq 1 - \delta \]

\[
\max_{x, T'} \sum_{s, a} \sum_{t=1}^{H} x(s, a, t) \left(\hat{R}(s, a) + e_\delta^R(s, a) \right) \quad \text{s.t.} \quad \sum_{s, a} \sum_{t=1}^{H} x(s, a, t) \left(\hat{C}(s, a) - e_\delta^C(s, a) \right) \leq \hat{c} \\
\quad x \text{ respects } T' \\
\quad T' \in \Sigma
\]

5Y. Efroni et al. "Exploration-Exploitation in Constrained MDPs". In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020
Optimism in Face of Uncertainty

OptCMDP optimistically chooses a transition function within the uncertainty set, uses the lower bound of the reward function and the upper bound of the cost function.

\[\Sigma = \left[T' \left| \| \hat{T}(\cdot | s, a) - T'(\cdot | s, a) \| \leq e^T_{\delta}(s, a) \right] \Rightarrow \mathbb{P}(T \in \Sigma) \geq 1 - \delta \right] \]

\[
\max_{x, T'} \sum_{s, a} \sum_{t=1}^{H} x(s, a, t) \left(\hat{R}(s, a) + e^R_{\delta}(s, a) \right) \quad \text{s.t.} \quad \sum_{s, a} \sum_{t=1}^{H} x(s, a, t) \left(\hat{C}(s, a) - e^C_{\delta}(s, a) \right) \leq \hat{c} \\
\text{x respects } T' \\
T' \in \Sigma
\]

5 Y. Efroni et al. “Exploration-Exploitation in Constrained MDPs”. In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020
Optimism in Face of Uncertainty

OptCMDP\(^5\) optimistically chooses a transition function within the uncertainty set, uses the lower bound of the reward function and the upper bound of the cost function.

\[
\Sigma = \left[T' \left| \| \hat{T}(\cdot | s, a) - T'(\cdot | s, a) \| \leq e_\delta^T(s, a) \right. \right] \Rightarrow P(T \in \Sigma) \geq 1 - \delta
\]

\[
\max_{x, T'} \sum_{s, a} \sum_{t=1}^{H} x(s, a, t) \left(\hat{R}(s, a) + e_\delta^R(s, a) \right) \quad \text{s.t.} \quad \sum_{s, a} \sum_{t=1}^{H} x(s, a, t) \left(\hat{C}(s, a) - e_\delta^C(s, a) \right) \leq \hat{c}
\]

\[
x \text{ respects } T' \quad T' \in \Sigma
\]

\(^5\)Y. Efroni et al. “Exploration-Exploitation in Constrained MDPs”. In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020
Optimism in Face of Uncertainty

OptCMDP\(^5\) optimistically chooses a transition function within the uncertainty set, uses the lower bound of the reward function and the upper bound of the cost function.

\[
\Sigma = \left[T' \left| \| \hat{T}(\cdot | s, a) - T'(\cdot | s, a) \| \leq e^T_\delta(s, a) \right. \right] \Rightarrow P(T \in \Sigma) \geq 1 - \delta
\]

\[
\max_{x, T'} \sum_{s, a} \sum_{t=1}^H x(s, a, t) \left(\hat{R}(s, a) + e^R_\delta(s, a) \right) \quad \text{s.t.} \quad \sum_{s, a} \sum_{t=1}^H x(s, a, t) \left(\hat{C}(s, a) - e^C_\delta(s, a) \right) \leq \hat{c} \\
\times \text{respects } T' \\
T' \in \Sigma
\]

Bounded regret in terms of performance and safety but policy might be unsafe.

\(^5\) Y. Efroni et al. “Exploration-Exploitation in Constrained MDPs”. In: ICML Workshop on Theoretical Foundations of Reinforcement Learning. 2020
Not Everything is Relevant for Safety

Factored MDP with cost function related to safety
Not Everything is Relevant for Safety

Factored MDP with cost function related to safety

Abstract factored MDP with safety dynamics
Cost-model-irrelevant Abstraction

\[
\tilde{M}_\phi = \langle \tilde{S}, A, \tilde{P}, \tilde{R}, \tilde{\mu}, \tilde{C}, \tilde{c} \rangle
\]

\[
\phi : S \rightarrow \tilde{S}
\]

\[
M = \langle S, A, P, R, \mu, C, \hat{c} \rangle
\]

\[
V_{\tilde{C}}^{\pi, \tilde{M}_\phi}(\tilde{\mu}) = V_{C}^{\pi, M}(\mu)
\]

\(\phi\) preserves the expected cost of the policy.
Cost-model-irrelevant Abstraction

\[\mathcal{M}_\phi = \langle \bar{S}, A, \bar{P}, \bar{R}, \bar{\mu}, \bar{C}, \hat{c} \rangle \]

\[\phi : S \rightarrow \bar{S} \]

\[\mathcal{M} = \langle S, A, P, R, \mu, C, \hat{c} \rangle \]

\[V_{\bar{C}, \mathcal{M}_\phi}(\bar{\mu}) = V_{C, \mathcal{M}}(\mu) \]

\(\phi \) preserves the expected cost of the policy.
We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x, T', z} \sum_{s, a} \sum_{t=1}^H x(s, a, t) \left(\hat{R}(s, a) + e^R_\delta(s, a) \right) \quad \text{s. t.} \quad \sum_{s, a} \sum_{t=1}^H z(s, a, t) C(s, a) \leq \hat{c}$$

x respects T'

$T' \in \Sigma$

z respects \tilde{T}

$$z(s, a, t) = \sum_{s \in \phi^{-1}(\tilde{s})} x(s, a, t) \quad \forall \tilde{s}, a, t$$
We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x, T', z} \sum_{s, a} \sum_{t=1}^H x(s, a, t) \left(\hat{R}(s, a) + e_\delta^R(s, a) \right) \quad \text{s.t.} \quad \sum_{\bar{s}, a} \sum_{t=1}^H z(\bar{s}, a, t) C(\bar{s}, a) \leq \hat{c}$$

x respects T'

$T' \in \Sigma$

z respects \bar{T}

$$z(\bar{s}, a, t) = \sum_{s \in \phi^{-1}(\bar{s})} x(s, a, t) \quad \forall \bar{s}, a, t$$
We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x,T',z} \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) \left(\hat{R}(s, a) + e_{\delta}^{R}(s, a) \right)$$

subject to

$$\sum_{\bar{s},a} \sum_{t=1}^{H} z(\bar{s}, a, t) C(\bar{s}, a) \leq \hat{c}$$

x respects T'

$T' \in \Sigma$

z respects \bar{T}

$$z(\bar{s}, a, t) = \sum_{s \in \phi^{-1}(\bar{s})} x(s, a, t) \quad \forall \bar{s}, a, t$$

z induces an abstract policy π_{A}.

x induces a ground policy π_{G}.
We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x, T', z} \sum_{s,a} \sum_{t=1}^H x(s, a, t) \left(\hat{R}(s, a) + e^R_\delta(s, a) \right) \quad \text{s. t. } \sum_{\bar{s}, a} \sum_{t=1}^H z(\bar{s}, a, t) C(\bar{s}, a) \leq \hat{c}$$

x respects T'

$T' \in \Sigma$

z respects \bar{T}

$z(\bar{s}, a, t) = \sum_{s \in \phi^{-1}(\bar{s})} x(s, a, t) \quad \forall \bar{s}, a, t$
We can compute a safe policy in the abstract CMDP using a new variable z.

\[
\max_{x, T', z} \sum_{s,a} \sum_{t=1}^{H} x(s, a, t) \left(\hat{R}(s, a) + e_\delta^R(s, a) \right) \quad \text{s. t.} \quad \sum_{\bar{s}, a} \sum_{t=1}^{H} z(\bar{s}, a, t) C(\bar{s}, a) \leq \hat{c}
\]

- x respects T'
- $T' \in \Sigma$
- z respects \bar{T}

\[
z(\bar{s}, a, t) = \sum_{s \in \phi^{-1}(\bar{s})} x(s, a, t) \quad \forall \bar{s}, a, t
\]

- z induces an abstract policy π_A.

AbsOptCMDP

We can compute a safe policy in the abstract CMDP using a new variable z.

$$\max_{x, T', z} \sum_{s, a} x(s, a) \left(\hat{R}(s, a) + e^R_\delta(s, a) \right) \quad \text{s. t.} \quad \sum_{\bar{s}, a} z(\bar{s}, a) C(\bar{s}, a) \leq \hat{c}$$

- x respects T'
- $T' \in \Sigma$
- z respects \bar{T}
- $z(\bar{s}, a) = \sum_{s \in \phi^{-1}(\bar{s})} x(s, a, t) \quad \forall \bar{s}, a, t$

- z induces an abstract policy π_A.
- x induces a ground policy π_G.
We May Need Everything to Compute an Optimal Policy

- The abstract policy π_A is safe but might be suboptimal.
- The ground policy π_G can reach optimality but has no safety guarantees.
The abstract policy π_A is safe.
The abstract policy π_A is safe but might be suboptimal.
We May Need Everything to Compute an Optimal Policy

- The abstract policy π_A is safe but might be suboptimal.
- The ground policy π_G can reach optimality.
We May Need Everything to Compute an Optimal Policy

- The abstract policy π_A is safe but might be suboptimal.
- The ground policy π_G can reach optimality but has no safety guarantees.
AlwaysSafe π_α

Dynamically adjusting the safety constraint to ensure safety

\begin{align*}
\beta &= 1 \\
\hat{c}_0 &= \hat{c}
\end{align*}

Search for policy that is safe in the whole uncertainty set.

1. $\hat{c}_t \leftarrow \beta_t \hat{c}$

2. Compute π_α according to \hat{c}_t

3. $\beta_t \leftarrow \beta_{t-1} - \alpha \max\{\max_{T' \in \Sigma} V_C(\pi_\alpha) - \hat{c}, 0\}$
AlwaysSafe π_α

Dynamically adjusting the safety constraint to ensure safety

Search for policy that is safe in the whole uncertainty set.

1. $\hat{c}_t \leftarrow \beta_t \hat{c}$
2. compute π_α according to \hat{c}_t
3. $\beta_t \leftarrow \beta_{t-1} - \alpha \max\{\max_{T' \in \Sigma} V_C(\pi_\alpha) - \hat{c}, 0\}$
AlwaysSafe π_α

Dynamically adjusting the safety constraint to ensure safety

Search for policy that is safe in the whole uncertainty set.

1. $\hat{c}_t \leftarrow \beta_t \hat{c}$
2. compute π_α according to \hat{c}_t
3. $\beta_t \leftarrow \beta_{t-1} - \alpha \frac{\max_{\tau' \in \hat{C}} V_C(\pi_\alpha) - \hat{c}, 0}{\hat{c}}$
AlwaysSafe π_α

Dynamically adjusting the safety constraint to ensure safety

Search for policy that is safe in the whole uncertainty set.

1. $\hat{c}_t \leftarrow \beta_t \hat{c}$
2. compute π_α according to \hat{c}_t
3. $\beta_t \leftarrow \beta_{t-1} - \alpha \max\{\max_{T' \in \Sigma} V_C(\pi_\alpha) - \hat{c}, 0\}$
Empirical Results

$p = 0.9$ and $\hat{c} = 0.1$
Empirical Results

\(p = 0.9 \) and \(\hat{c} = 0.1 \)
Empirical Results

$p = 0.9$ and $\hat{c} = 0.1$
Take Home Message

Constrained RL

- models safety requirements explicitly and
- avoids reward engineering/hacking.
Take Home Message

Constrained RL

- models safety requirements explicitly and
- avoids reward engineering/hacking.

The algorithm proposed

- is always safe during the learning process (with high probability),
- seamlessly switches from a conservative policy to a greedy policy and
- can explore optimistically.
Take Home Message

Constrained RL

• models safety requirements explicitly and
• avoids reward engineering/hacking.

The algorithm proposed

• is always safe during the learning process (with high probability),
• seamlessly switches from a conservative policy to a greedy policy and
• can explore optimistically.

Thank you!