

A Reinforcement Learning Environment For Job-Shop Scheduling

Pierre Tassel, Martin Gebser, and Konstantin Schekotihin Department of Artificial Intelligence and Cybersecurity, University of Klagenfurt

Introduction

- Scheduling is a fundamental task occurring in various automated systems applications
- We present an efficient environment to learn to solve job-shop scheduling

Contribution

- Optimized environment to solve the job-shop scheduling problem
- Compact yet meaningful state
 representation
- Dense reward function, correlated with the sparse make-span minimization objective

Evaluation setup

- Instances: Taillard's and Demirkol's 30 jobs and 20 machines
- Train using PPO algorithm for 10 minutes
- Compare our approach against
 - the most widely used dispatching rules
 - a state-of-the-art CP solver

The best solution make-span for each approach per instance:

DATASET	INSTANCE	OURS	FIFO	MWKR	(ZHANG ET AL. 2020)	(HAN AND YANG 2020)	OR Tools	Upper Bound
TAILLARD	та41	2208	2543	2632	2667	2450	2144	2005
	та42	2168	2578	2401	2664	2351	2071	1937
	та43	2086	2506	2385	2431	_	1967	1846
	та44	2261	2555	2532	2714	_	2094	1979
	та45	2227	2565	2431	2637	_	2032	2000
	та46	2349	2617	2485	2776	_	2129	2004
	та47	2101	2508	2301	2476	_	1952	1889
	та48	2267	2541	2350	2490	_	2091	1941
	та49	2154	2550	2474	2556	_	2089	1961
	та50	2216	2531	2496	2628	_	2010	1923
	Average	2203	2549	2449	2604	_	2058	1948
Demirkol	DMU16	4188	4934	4550	4953	4414	3903	3751
	DMU17	4274	5014	4874	5379	_	3960	3814
	DMU18	4326	4936	4792	5100	_	4073	3844
	DMU19	4195	4902	4842	4889	_	3922	3764
	DMU20	4074	4539	4500	4859	_	3913	3703
	Average	4211	4865	4712	5036	_	3954	3775

Conclusions

- Our environment yields excellent performance compared with other RL and non-RL approaches.
- Having a dense reward correlated to the objective sparse reward will help future work to improve the agent's performance further, removing one of the obstacles to solving this problem with RL.
- This environment is also more complete than the previously proposed models as it allows the agent not to schedule any operation at a given time step.

Literature cited

Zhang et al, 2020, Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning. Han et al, 2020. Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN.

Further information

Full approach code is available here: https://github.com/prosysscience/RL-Job-Shop-Scheduling

The gym environment is available as a pip package: **pip install JSSEnv**