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Introduction

* Scheduling is a fundamental
task occurring in various
auvtomated systems applications

*  We present an efficient
environment to learn to solve
job-shop scheduling

Contribution

* Optimized environment to solve
the job-shop scheduling
problem

*  Compact yet meaningful state
representation

* Dense reward function,
correlated with the sparse
make-span minimization
objective

Evaluation setup

* Instances: Taillard’s and
Demirkol’s 30 jobs and 20
machines

* Train using PPO algorithm for
10 minutes

* Compare our approach against
* the most widely used

dispatching rules

* a state-of-the-art CP solver

Conclusions

*  Our environment yields
excellent performance
compared with other RL and
non-RL approaches.

* Having a dense reward
correlated to the objective
sparse reward will help future
work to improve the agent’s
performance further, removing
one of the obstacles to solving
this problem with RL.

¢ This environment is also more
complete than the previously
proposed models as it allows
the agent not to schedule any
operation at a given time step.
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The best solution make-span for each approach per instance:
DATASET INSTANCE OURS FIFO MWKR (ZHANG ET AL. 2020) (HAN AND YANG 2020) OR UPPER
A : TooLs BOUND
TAILLARD  TA41 2208 2543 2632 2667 2450 2144 2005
TA42 2168 2578 2401 2664 2351 2071 1937
TA43 2086 2506 2385 2431 — 1967 1846
TA44 2261 2555 2532 2714 — 2094 1979
TA4S 2227 2565 2431 2637 — 2032 2000
TA46 2349 2617 2485 2776 — 2129 2004
TA4T 2101 2508 2301 2476 — 1952 1889
TA48 2267 2541 2350 2490 — 2091 1941
TA49 2154 2550 2474 2556 — 2089 1961
TAS0 2216 2531 2496 2628 — 2010 1923
Average 2203 2549 2449 2604 — 2058 1948
DEMIRKOL DMU16 4188 4934 4550 4953 4414 3903 3751
DMU17 4274 5014 4874 5379 — 3960 3814
pMU18 4326 4936 4792 5100 — 4073 3844
pMU19 4195 4902 4842 4889 — 3922 3764
DMU20 4074 4539 4500 4859 — 3913 3703
Average 4211 4865 4712 5036 —_ 3954 3775
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Further information

Full approach code is available here:

The gym environment is available as a pip
package:
pip install JSSEnv



https://github.com/prosysscience/RL-Job-Shop-Scheduling

