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Figure 4: A schematic overview of SOLO. On the left, a depiction of our DQN 
training process, which produces the    -Net heuristic. On the right is our planning 
procedure that, for each step, runs our modified MCTS with    -Net as a heuristic
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A combinatorial optimization (CO) problem is given by where:, ,S f

• – is the set of problem instances
• – maps an instance to its set of feasible solutions
• – objective function mapping solutions in to real valuesf
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Parallel Machine Scheduling Problem (PMSP)

Capacitated Vehicle Routing problem (CVRP)

Specifically the unrelated machines scheduling with setup and processing time.

• – number of machines
• – number of jobs
• – processing time of job on machine
• – setup time to pass if job of class is to be processed after job of class
• – weight of job
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Objective: minimize sum of weighted completion times

Specifically the single vehicle, single commodity routing problem.

• – number of customers
• – vehicle capacity
• – demand of customer
• – commodity location
• – customers locations
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Objective: total distance traveled by the vehicle

Offline variant: everything is known a-priori, e.g., all jobs are in the system (PMPS)
Online variant: dynamic arrivals of assigned variables, e.g., jobs (PMPS)

MODELING

Decision Points: event, a change in the system, i.e., job arrival\machine is free (PMPS),
vehicle reaches a destination\customer arrival (CVRP).

A CO problem is modeled by a sequential decision process, specifically finite horizon
Markov Decision Process (MDP) .

Actions Corresponds directly to the graph edges

Figure 1: The GNN representation of 
PMPS. Bi-partite graph. Edges 
represents possibility of scheduling 
a job on a machine.
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Figure 2: The graph representation of 
CRVP. Star-graph. Edges represents 
possible route of the vehicle to a 
customer.
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METHOD

Learn Offline

Search Online

Deep Reinforcement Learning (DRL) using Deep Q-networks (DQN).

• Simulate problems of different sizes (enabled by the graph representation)
• Learn size agnostic scheduling policy.
• Generalize to problems larger than simulated.

Monte Carlo Tree Search (MCTS) to reduce erroneous assignment (small perturbations
have great effect on the objective in CO).

• Use learned -Net from offline stage as heuristic.
• Action pruning, choose only between actions with the top k -Net values.
• Suppress future arrivals after some

Q

Q

T

Theoretical optimality is compromised for better empirical results

EMPIRICAL EVALUATION

Figure 5: Scheduling results for all 
problem variants. Each cell includes the 
average cost on 50 seeds and the 
fractional improvement of each 
method compared to CPLEX.

Figure 6: Offline and Online CVRP 
results. Each cell contains the 
average cost and the fractional 
improvements over OR-Tools. 

CONCLUSION AND FUTURE WORK

• A hybrid Learning-planning scheme for dealing with NP-Hard CO problems
• Size generalization with compact network by virtue of the graph representation
• Refinement of learning approximations with online search.

• Close the loop by integrating the online MCTS experience back into the learning stage.
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• – is the set of states, i.e., all the entities (jobs, machines, customers) and their
properties, (size may change!)

• – partial variables assignment, e.g., assign job to machine .
• – dynamics of the process correlated to the passed time.
• – reward, i.e., minus the cost of the time passed between last two events,

incurred by taking action at decision point .
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Setting

Graph Encoding

Mapping from state space to graph space representation, each state is a graph!
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• – is the set of vertices, the entities in the problems, e.g., machines, jobs,
customers, etc.

• – the set of edges connecting between the vertices, represents relation and
information flow.

• – features of the vertices, edges and graph respectively.
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Event-based process

Figure 3: node feature vector of 
PMPS. Unified representation for 
all node types.


