SOLO: Search Online, Learn Offline for Combinatorial Optimization Problems

Joel Oren¹, Chana Ross¹, Maksym Lefarov¹, Felix Richter¹, Ayal Taitler², Zohar Feldman¹, Dotan Di Castro¹, Christian Daniel¹

¹ Bosch Center for Artificial Intelligence ² Technion – Israel Institute of Technology

TECHNION
Israel Institute of
Technology

BCAI
Bosch Center
For Al

August 2021

INTRODUCTION

A combinatorial optimization (CO) problem is given by $\langle \mathcal{I}, S, f \rangle$ where:

- \mathcal{I} is the set of problem instances
- S maps an instance $I \in \mathcal{I}$ to its set of feasible solutions
- f objective function mapping solutions in S(I) to real values

Parallel Machine Scheduling Problem (PMSP)

Specifically the unrelated machines scheduling with setup and processing time.

- m number of machines
- n number of jobs
- $p_{i,j}$ processing time of job i on machine j
- $s_{i,l}$ setup time to pass if job of class i is to be processed after job of class l
- w_i weight of job i

Objective: minimize sum of weighted completion times

Capacitated Vehicle Routing problem (CVRP)

Specifically the single vehicle, single commodity routing problem.

- *N* number of customers
- C^* vehicle capacity
- d_i demand of customer i, $d_i \leq C^*$
- o commodity location
- p_i customers locations

Objective: total distance traveled by the vehicle

Offline variant: everything is known a-priori, e.g., all jobs are in the system (PMPS)

Online variant: dynamic arrivals of assigned variables, e.g., jobs (PMPS)

MODELING

Setting

A CO problem is modeled by a sequential decision process, specifically finite horizon Markov Decision Process (MDP) $\langle S, A, T, R \rangle$.

Event-based process

Decision Points: event, a change in the system, i.e., job arrival\machine is free (PMPS), vehicle reaches a destination\customer arrival (CVRP).

- *S* is the set of states, i.e., all the entities (jobs, machines, customers) and their properties, (size may change!)
- A partial variables assignment, e.g., assign job j to machine i.
- \bullet T dynamics of the process correlated to the passed time.
- R reward, i.e., minus the cost of the time passed between last two events, incurred by taking action $a_t \in A$ at decision point t.

Graph Encoding

Mapping from state space to graph space representation, each state is a graph!

$$s_t \in S \rightarrow \zeta(s_t) = G = \langle V, E, f^v, f^e, f^g \rangle$$

- V- is the set of vertices, the entities in the problems, e.g., machines, jobs, customers, etc.
- E the set of edges connecting between the vertices, represents relation and information flow.
- f^v, f^e, f^s features of the vertices, edges and graph respectively.

Figure 1: The GNN representation of PMPS. Bi-partite graph. Edges represents possibility of scheduling a job on a machine.

vehiclecustomer

Figure 2: The graph representation of CRVP. Star-graph. Edges represents possible route of the vehicle to a customer.

vehiclecustomer

Actions Corresponds directly to the graph edges

Figure 3: node feature vector of PMPS. Unified representation for all node types.

METHOD

Learn Offline

Deep Reinforcement Learning (DRL) using Deep Q-networks (DQN).

- Simulate problems of *different* sizes (enabled by the graph representation)
- Learn size agnostic scheduling policy.
- Generalize to problems larger than simulated.

Search Online

Monte Carlo Tree Search (MCTS) to reduce erroneous assignment (small perturbations have great effect on the objective in CO).

- Use learned Q-Net from offline stage as heuristic.
- Action pruning, choose only between actions with the top k $ilde{Q}$ -Net values.
- Suppress future arrivals after some ΔT

Theoretical optimality is compromised for better empirical results

Figure 4: A schematic overview of SOLO. On the left, a depiction of our DQN training process, which produces the \tilde{Q} -Net heuristic. On the right is our planning procedure that, for each step, runs our modified MCTS with \tilde{Q} -Net as a heuristic

EMPIRICAL EVALUATION

	Offline PMSP		Uniform-Random[UR]	-13.21
	liao 20	liao 80	Distance[D]	-10.43
WSPT	-16570.16 (5.82%)	-182357.02 (4.15%)	Savings	-6.35 (
CPLEX	-15658.46 (0%)	-175084.88 (0%)	Sweep	-8.89 (
NeuralRewriter	-16540.28 (5.63%)	-182450.02 (4.21%)	OR-Tools	-6.42 (
	,		NeuralRewriter	-6.95 (
O-net	-15906.32 (1.58%)	-178444.74 (1.92%)		
MCTS+WSPT	-15876.88 (1.39%)		Q-Net	-6.84 (
SOLO	-15695.94 (0.24%)	-175524.34 (0.25%)	MCTS+UR	-7.65 (
SOLO+Prune	-15683.46 (0.16%)	-175164.58 (0.05%)	MCTS+D	-7.15 (
optimal	-15628.68 (-0.19%)	,	SOLO	-6.21 (
•				
	Online PMSP			Online
	3 machines	10 machines		
	3 macmines	10 macmics		
WSPT	-40601.34 (15.04%)	-29102.5 (18.87%)	Uniform-Random[UR]	
WSPT CPLEX			Distance[D]	-9.75 (
	-40601.34 (15.04%)	-29102.5 (18.87%)	. ,	-9.75 (-9.90 (
CPLEX	-40601.34 (15.04%) -35294.38 (0%)	-29102.5 (18.87%) -24481.9 (0%) -27350.68 (11.72%)	Distance[D] Savings Sweep	-12.72 -9.75 (-9.90 (-11.16
CPLEX	-40601.34 (15.04%) -35294.38 (0%)	-29102.5 (18.87%) -24481.9 (0%) -27350.68 (11.72%)	Distance[D] Savings	-9.75 (-9.90 (-11.16
CPLEX NeuralRewriter	-40601.34 (15.04%) -35294.38 (0%) -38575.78 (9.3%)	-29102.5 (18.87%) -24481.9 (0%) -27350.68 (11.72%)	Distance[D] Savings Sweep	-9.75 (-9.90 (-11.16 -9.86 (
CPLEX NeuralRewriter Q-net	-40601.34 (15.04%) -35294.38 (0%) -38575.78 (9.3%) -37386.9 (5.93%)	-29102.5 (18.87%) -24481.9 (0%) -27350.68 (11.72%) -26031.5 (6.33%)	Distance[D] Savings Sweep OR-Tools	-9.75 (-9.90 (-11.16 -9.86 (
CPLEX NeuralRewriter Q-net MCTS+WSPT	-40601.34 (15.04%) -35294.38 (0%) -38575.78 (9.3%) -37386.9 (5.93%) -35489.56 (0.55%)	-29102.5 (18.87%) -24481.9 (0%) -27350.68 (11.72%) -26031.5 (6.33%) -24724.76 (0.99%) -24747.38 (1.08%)	Distance[D] Savings Sweep OR-Tools	-9.75 (-9.90 (-11.16 -9.86 (-10.00
CPLEX NeuralRewriter Q-net MCTS+WSPT SOLO	-40601.34 (15.04%) -35294.38 (0%) -38575.78 (9.3%) -37386.9 (5.93%) -35489.56 (0.55%) -35434.46 (0.4%)	-29102.5 (18.87%) -24481.9 (0%) -27350.68 (11.72%) -26031.5 (6.33%) -24724.76 (0.99%) -24747.38 (1.08%)	Distance[D] Savings Sweep OR-Tools NeuralRewriter	-9.75 (-9.90 (

Figure 5: Scheduling results for all problem variants. Each cell includes the average cost on 50 seeds and the fractional improvement of each method compared to CPLEX.

	Omnic C v Ki				
	20	100			
Uniform-Random[UR]	-13.21(107.51%)	-58.84 (230.13%)			
Distance[D]	-10.43 (63.65%)	-47.59 (167.38%)			
Savings	-6.35 (-1.04%)	-16.51 (-7.94%)			
Sweep	-8.89 (39.33%)	-28.24 (58.11%)			
OR-Tools	-6.42 (0.00%)	-17.96 (0.00%)			
NeuralRewriter	-6.95 (8.48%)	-19.45 (8.57%)			
O Not	6.04 (6.500)	10.07 (7.60%)			
Q-Net	-6.84 (6.59%)	-19.27 (7.62%)			
MCTS+UR	-7.65 (19.45%)	-46.34 (160.11%)			
MCTS+D	-7.15 (12.01%)	-44.00 (147.44%)			
SOLO	-6.21 (-3.18%)	-17.68 (-1.24%)			
Online CVRP					
	20	100			
Uniform-Random[UR]	-12.72 (31.67%)	-52.73 (108.06%)			
Distance[D]	-9.75 (0.76%)	-33.65 (32.72%)			
Savings	-9.90 (0.51%)	-25.15 (-0.90%)			
Sweep	-11.16 (13.73%)	-29.52 (16.16%)			
OR-Tools	-9.86 (0.00%)	-25.40 (0.00%)			
NeuralRewriter	-10.00 (1.56%)	-25.85 (1.90%)			
Q-net	-8.79 (-9.76%)	-26.80 (5.70%)			
MCTS+UR	-7.80 (-20.27%)	-28.72 (12.98%)			
MCTS+D	-6.78 (-30.84%)	-25.58 (0.78%)			
SOLO	-6.63 (-32.38%)	-24.80 (-2.28%)			

Offline CVRP

Figure 6: Offline and Online CVRP results. Each cell contains the average cost and the fractional improvements over OR-Tools.

CONCLUSION AND FUTURE WORK

- A hybrid Learning-planning scheme for dealing with NP-Hard CO problems
- Size generalization with compact network by virtue of the graph representation
- Refinement of learning approximations with online search.
- Close the loop by integrating the online MCTS experience back into the learning stage.

REFERENCES

- 1. Silver, D. et. al. 2017. Mastering the game of go without human knowledge. Nature, 550(7676):354–359.
- 2. Kocsis, L. et. Al. C. 2006. Bandit based monte-carlo planning. In ECML, 282–293. Springer.
- 3. Zhuwen, L. et. al. 2018. Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search. In NeurIPS.