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Introduction

Motivation:

* Predicting environment's future outcomes is important to perform
dynamic tasks.

* State-of-the-art planners can reason effectively with symbolic
representations of the environment. However, when the
environment is continuous and unstructured, extracting an ad-hoc
symbolic model to perform planning may be infeasible.

Contribution:

* |nteraction with symbolic representation learning, and symbolic
online planning.

* |t autonomously learns a symbolic planning model composed
of: (i) a symbol grounding model to switch from continuous to
symbolic space and vice versa; (ii) a symbolic transition model; (iii) a
value function for symbolic states.

* We exploit the symbolic model to plan for the agent actions in the
continuous state-space.

Methodology
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Grounding and planning:
* Symbol grounding: the encoder network maps the continuous state

in a propositional symbolic representation. The latter is used by all
the other system components.

* Symbolic planning: at each step the agent plans the next T steps in
the symbolic space using the learned models and executes the first
action of the plan in the environment.
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Learning the models:

 The four neural networks are trained end-to-end with samples
(state, action, next state, rewards) observed in the environment.

* The symbolic transition network is trained minimizing the next
state prediction error in the continuous and in the symbolic state-
space.

Training rewards:

Mean Reward

Mean Reward

Our discrete system achieves competitive results in different
OpenAl gym environments when compared to Q-learning
configured on continuous state-spaces.
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Code abstraction and generalization:

* Left) convergence with different sizes of the symbols set: the
number of symbols is a crucial hyperparameter to make the system
converge.

* Right) Transfer learning: we can use the distance in the symbolic
space to drive the agent to different goals in the same environment.
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Conclusions and future works

Conclusions:

This work proposes an interactive learning algorithm inspired by
both planning and Reinforcement Learning.

It automatically learns a symbolic planning domain from a
continuous-state MDP.

We show that reasoning in the symbolic space is enough to
effectively guide the agent's action to achieve the task in the
continuous environment.

Future work:

Focus on the domain re-usability to eliminate the second training
necessary for achieving a new goal.

Learn an uncertainty model for the transitions, in order to use the
symbolic model to plan towards little explored states.




