
Efficient PAC Reinforcement Learning in
Regular Decision Processes

Alessandro Ronca Giuseppe De Giacomo
DIAG – Sapienza Università di Roma

Setting: Agent and Environment

An agent interactswith its environment, performing actions, and receiving observations and rewards.

To learn, the agent has the opportunity to stop and possibly start over. This process generates

strings of the form

a1, o1, r1, . . . , an, on, rn

which we call episodes. They form the experience of the agent, which is the basis to improve its

behaviour.

Figure 1. An agent interacting with its environment.

Non-Markov Decision Processes (NMDPs)

NMDPs are decision processes where the Markov property does not necessarily hold. Thus, their

dynamics can depend on the past observations.

P = 〈A, O, R, T, R, γ〉
The components are as follows:

actionsA, observationsO, and rewardsR;

transition functionT : O∗ × A → P(O);
reward functionR : O∗ × A × O → R;

discount factor γ ∈ (0, 1).

Also policies are history-dependent. A policy is a function π : O∗ → P(A) that maps histories of

observations to probability distributions over actions. The valuevπ of a policy π is also a function of

the history, vπ : O∗ → R. A policy is (near-)optimal if its value is (near-)maximum on every history.

Regular Decision Processes (RDPs)

RDPs have been first introduced in [2] as the class of NMDPs where the functions T and R can be

represented using the temporal logic on finite traces LDLf . It has the same expressive power as (i)

Monadic Second-Order Logic on finite ordered traces, and (ii) Regular Expressions. Equivalently,

here we use finite-state transducers:

a finite-state transducer that, on every history h ∈ O∗, outputs the functionTh : A → P(O)
induced byTwhen its first argument is h;

a finite-state transducer that, on every history h ∈ O∗, outputs the functionRh : A × O → R
induced byR when its first argument is h.

Example of an RDP

As an example of RDP, consider a grid. At each moment, the agent observes the coordinates of its

current cell, and the content of the cell. The cell at the right-bottom corner contains a door, which is

initially closed, and it openswhen the agent pushes a button located in the cell at the left-top corner

(by simply visiting the cell). Such dynamics are captured by the automaton shown below. There are

twostates foreachcell, except for thebuttoncellwhichhasonlyone. Each state records thecurrent

position and whether the button cell has been visited.

a. Initial position. b. Closed door.

c. Button.
d. Open door.

Figure 3. Each of the four figures shows the observed environment on the left, and the corresponding state of the

automaton on the right.

Main Result

Consider a reinforcement learningalgorithmthat takesas input theactionsA, thediscount factor

γ, an accuracy parameter ε, and a confidence parameter δ. The algorithm outputs a sequence of

policies π1, π2, . . . , π∗
1 , π∗

2 , . . . with the following guarantees:

quality:

∀i. Pr
(

∃h.v∗(h) − vπ∗
i
(h) > ε

)
≤ δ (1)

time to output π∗
1 :

poly
(

1
ε
, ln

(
1
δ

)
, |A|, 1

1 − γ
, Rmax, n,

1
ρ
,
1
µ

,
1
η

)
(2)

where thementioned parameters are defined as follows:

n is the number of states of the minimum underlying automaton;

ρ is the reachability of states, and it is theminimum non-zero probability of reaching a state in

n steps under the uniform policy;

µ is the distinguishability of states, which is how different they look from a statistical point of

view;

η is the degree of determinism, and it is defined as theminimum non-zero probability of an

observation for a given history and action.

Furthermore, the polynomial time guarantee cannot hold with respect to a strict subset of the

parametersabove, assuming that it is hard to learnnoisyparity functions (see ‘HardnessResults’).

Technique

Probabilistic-Deterministic Finite Automata (PDFA)

Our technique is based on PDFA. A PDFA is a tuple 〈Q, Σ, ζ, τ, λ, q0〉where:

Q is a finite set of states,Σ is a finite alphabet, ζ is the end-of-string symbol, q0 is the inital state;

τ : Q × Σ → Q is a deterministic transition function;

λ : Q → P(Σ ∪ {ζ}) specifies, for every state, the probability of generating a certain symbol, or

terminating.

PDFA are PAC-learnable in time polynomial in the number of states, the alphabet size, and state

distinguishability [1].

Capturing RDPs via PDFA

Consider action-observation-reward traces generated under a fixed policy, that chooses to stop

eventuallywithprobability one. Theprobability distributionover such traces is capturedbyaPDFA.

A simple RL algorithm for RDPs

1. Learn a PDFA from traces generated under the uniform policy (with constant stop probability);

2. Map the PDFA to anMDP;

3. Solve theMDP (e.g., value iteration) to obtain aMarkov policy;

4. Return theMarkov policy composed with the transition function of the PDFA.

Guarantees

The algorithm can be shown to have PAC-style guarantees:

From the classic RL literature we know that a sufficiently accurate approximation of anMDP

allows one to compute a near-optimal policy, cf. [4].

We can show that every near-optimal policy for theMDP built from the PDFA yields a

near-optimal policy for the original MDPwhen composed with the transition function;

The accuracy of theMDP is bound to the accuracy of the PDFA;

An accurate PDFA can be learned in polynomial time [1].

Hardness Results

None of the parameters in Equation (2) is redundant. It can be shown as follows:

The parameters 1
ε, ln

(
1
δ

)
, |A|, 1

1−γ , Rmax are already necessary inMDPs;

Without a number of steps that grows with n, 1
ρ, 1

η , the agent may not observe events that are

necessary to choose a good policy;

For 1
µ, there is a reduction from learning noisy parity functions, already used for PDFA [3].

References

[1] Borja Balle, Jorge Castro, and Ricard Gavaldà. Learning probabilistic automata. Theor. Comp. Sci., 2013.

[2] Ronen I. Brafman and Giuseppe DeGiacomo. Regular decision processes: Amodel for non-Markovian domains. In IJCAI, 2019.

[3] Michael J. Kearns, YishayMansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, and Linda Sellie. On the learnability of discrete

distributions. In STOC, 1994.

[4] Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial time.Mach. Learn., 2002.

PRL at ICAPS 2021 ronca@diag.uniroma1.it

mailto:ronca@diag.uniroma1.it

