Junkyu Lee, Michael Katz, Don Joven Agravante, Miao Liu, Tim Klinger, Murray Campbell, Shirin Sohrabi, Gerald Tesauro

AI Planning Annotation in Reinforcement Learning: Options and Beyond

IBM Research AI

PRL workshop at ICAPS 2021

Summary

Planning Annotation in RL

Derive hierarchical RL architecture from AI planning task Generate option specifications from planning operators **Solving Planning Annotated RL Task**

Utilize AI planning and RL algorithms and improve sample efficiency Future Work

Online approach interleaves option selection and intra-option learning Learning AI planning task

Background – RL and Options Framework

Planning Annotated RL Task Planning Annotated RL Task (PaRL) $\langle \mathcal{M}, \mathcal{T}, L \rangle$ $\mathcal{M} : MDP \quad \mathcal{T} : Planning Task \quad L : State mapping function$

Options from AI Planning Task

$$I_{Op} = \{s \in S | \text{precondition}(Op) \subseteq L(s)\}$$

$$\beta_{Op} = \begin{cases} T \text{ if prevail } (Op) \cup \text{ effect } (Op) \subseteq L(s) \\ F \text{ o.w.} \end{cases}$$

Markov Decision Process $\mathcal{M} = \langle S, A, P, R, \gamma \rangle$ stationary stochastic policy $\pi(a|s) : S \times A \rightarrow [0,1]$ $MEU = \max_{\pi} \lim_{k \to \infty} \mathbb{E}_{\pi} [\sum_{t=0}^{t=k} \gamma^{t} r^{t}]$ $V^{\pi}(s) = \sum_{a} \pi(a|s) [r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) V^{\pi}(s)]$ Options Framework $\langle \mathcal{M}, O \rangle$ [Sutton, Precup, and Singh 1999]

$o = \langle I_o, \pi_o, \beta(o) \rangle$	I_o : option Initiation set
	$\pi_o:$ intra option policy function
	$\beta(o)$: option termination set

option level policy $\mu(o'|s, o) : S \times O \times O \rightarrow [0, 1]$ intra option policy $\{\pi_o(a|s, o)|o \in O\}$

Semi-MDP over Options

Solving PaRL

$\bar{p}(s'|s,o) = \sum_{j=0}^{\infty} \gamma^j p(s'=s^{t+j}|s=s^t)$

Background – Al Planning Task

Al Planning Task $\mathcal{T} = \langle V', O', S'_G \rangle$ variables $V' : \{V_0, V_1, \dots, V_{|V'|}\}$ operators $O' : \{O_1, O_2, \dots, O_{|O'|}\}$ goal states $S'_G : S'_G \subseteq S'$ planning states $S' : \{(V_0 = v_0, V_1 = v_1, \dots, V_{|V'|} = v_{|V'|}) | V_i \in V'\}$

Related Works

Hierarchical RL [Kulkarni, et. al 2016]

Define master/slave architecture and master policy generates subgoals for each slave

Offline Options Training with SMDP learning

Select options for a problem given a fixed initial/ terminal state.

Option Selection by Offline planning

SMDP Learning + PPO using pretrained options [Sutton, Precup, and Singh 1999] [Schulman, et. al 2017]

Option Critic [Bacon and Precup 2017]

End-to-End approach for training intra option and option level policy functions

PEORL/SDRL [Yang, et. al 2018][Lyu, et. al 2019] Derive a Planning task from BC action language

Taskable RL [Illanes, et. al 2020]

Derive a planning task from subtasks in RL problem