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MOTIVATION 

▪ Consider trajectory planning in a 2-dimensional 

environment with a highly stochastic region 

(green). 
▪ Given that entering the stochastic region 

increases the probability of failure in a planning 

framework, 

▪ We aim to reduce cumulative reward variance, 
while maintaining high cumulative reward.  

 

OBJECTIVES 

▪ Enable risk-aware planning using mean-

variance approximation of entropic utility. 

▪ Leverage auto-differentiation improve 

action sequences directly, in an end-to-
end manner. 

▪ Avoid computational difficulties of using 

the Bellman Principle explicitly 

▪ Safety is a concern of machine learning 

models deployed in the real world (Faria 

2018; Pereira and Thomas 2020). 

▪ Optimizing expected cumulative reward 

can lead to excessive risk taking in 
sequential stochastic decision-making 

(Moldovan 2014) 

▪ This problem can be addressed by 

optimizing risk measures with favorable 

mathematical properties (Ruszcyński 

2010) 

▪ Much of the existing scalable end-to-end 
planning frameworks do not incorporate 

risk, such as BackpropPlan (Wu, Say and 
Sanner 2017) 

RELATED WORK 

▪ We can sample independent noise and 

use it to reparametrize stochastic 

transitions into deterministic transitions 

with added noise (black arrows). 
 

 
▪ For each batch of forward passes we 

estimate the sufficient statistics of the 

cumulative reward and use them to 

calculate the utility objective. 

▪ Notably, due to the reparametrized 

transitions, we can leverage auto-

differentiation to update the sequence of 
actions (red arrows). 

MAIN IDEA 

  

▪ Suppose you have a stochastic node 𝑠𝑡+1 
𝑠𝑡+1 ∼ 𝑝ሺ∙ ȁ𝑠𝑡, 𝑎𝑡ሻ 

▪ 𝑠𝑡+1 blocks the gradient of the objective from 

backpropogating to 𝑠𝑡. 

▪ Reparameterization transforms 𝑠𝑡+1 into: 
𝑠𝑡+1 = 𝜙ሺ𝑠𝑡, 𝑎𝑡, 𝜀𝑡ሻ,  ε𝑡 ∼ 𝑝ሺε𝑡ሻ 

▪ where 𝜙ሺ∙ሻ is a deterministic function that is 

differentiable w.r.t. 𝑎𝑡 and 𝑠𝑡. 

▪ Now sampling 𝛆 = ሺε0, … , ε𝐻ሻ we can generate 

samples of σ 𝑟ሺ𝑠𝑡 , 𝑎𝑡ሻ𝐻
𝑡=0  

▪ which can be used to estimate sufficient 

statistics and in turn the utility objective and its 

gradient. 

 

Reparameterization & Forward Sampling 

Straight-line Utility Objective 

▪ Update actions based on straight-line utility 

objective: 

𝑢𝑆𝐿ሺ𝑠0ሻ ≔ 𝑚𝑎𝑥
𝑎0:𝐻

𝑈𝜀0:𝐻
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 ▪ Where 𝑈𝜀0:𝐻
 is the entropic utility:  

𝑈ሺ𝑋ሻ ≔
1

𝛽
𝑙𝑜𝑔𝔼ൣ𝑒𝛽𝑋൧ 

▪ Using Taylor expansion, it can be written in 

mean variance form:  

𝑈ሺ𝑋ሻ = 𝔼ሾ𝑋ሿ +
𝛽

2
𝑉𝑎𝑟ሾ𝑋ሿ + 𝑂ሺ𝛽2ሻ 

▪ Now 𝛽 can be interpreted as a risk aversion 

parameter: 

I.  𝛽 = 0 induces risk neutral behavior 

II. 𝛽 > 0 (𝛽 < 0) induces risk-seeking (risk-
averse) behaviors. 

▪ Theoretical results: 

I. For any R.V. X, Y if  

P (X ≥Y) = 1 then U(X) ≥U(Y). 

II. If c is deterministic then U (X + c) = U(X) + c 
III. Due to the recursive property of entropic 

utility (Osogami 2012; Dowson, Morton, and 

Pagnoncelli 2020), the optimal utility 
satisfies the Bellman equation: 

𝑈ℎ
∗ሺ𝑠ℎሻ = 𝑚𝑎𝑥

𝑎ℎ∈𝒜
𝑈𝑠ℎ+1

൫𝑟ሺ𝑠ℎ, 𝑎ℎሻ + 𝑈ℎ+1
∗ ሺ𝑠ℎ+1ሻ൯ 

IV. By result I and III, the optimal utility 𝑈0
∗ሺ𝑠0ሻ 

satisfies:  

𝑈0
∗ሺ𝑠0ሻ ≥ 𝑢𝑆𝐿ሺ𝑠0ሻ 

 

EXPERIMENTAL EVALUATION 

▪ Tested on two environments: 

I. Navigation (Faulwasser and Findeisen 
2009): 

 

 

𝛽 Misses (%) 

0.0 92.29 

-1.25 0.17 

-2.5 0.09 

 

 
II. Reservoir Control (Yeh 1985): 

     

 

𝛽 Overflows (%) 

−10−7 0.67 

−10−6 0.65 

−10−5 0.54 

−10−4 0.61 

−10−3 0.17 

 
Observations: 

I. Lower 𝛽 (more risk-aware) leads to less 

variance cumulative reward 

II. Lower 𝛽 increased cumulative reward 

III. Lower 𝛽 leads to less overflows in the 

reservoir domain 

IV. Risk-aware reservoir sets the water 
levels lower. 

Observations: 

I. Lower 𝛽 (more 
risk-aware) yields 
lower cumulative 
reward variance 

II. Lower 𝛽 leads to 
smaller cumulative 
reward 

III. Lower 𝛽 leads to 
less goal state 
misses 

IV. Risk-aware 
navigation results 
in agent avoiding 
highly stochastic 
region. 


