Consider trajectory planning in a 2-dimensional
environment with a highly stochastic region
(green).

Given that entering the stochastic region
increases the probability of failure in a planning
framework,

We aim to reduce cumulative reward variance,
while maintaining high cumulative reward.

Enable risk-aware planning using mean-
variance approximation of entropic utility.
Leverage auto-differentiation improve
action sequences directly, in an end-to-
end manner.

Avoid computational difficulties of using
the Bellman Principle explicitly

Safety is a concern of machine learning
models deployed in the real world (Faria
2018; Pereira and Thomas 2020).
Optimizing expected cumulative reward
can lead to excessive risk taking in
sequential stochastic decision-making
(Moldovan 2014)

This problem can be addressed by
optimizing risk measures with favorable
mathematical properties (Ruszcynski
2010)

Much of the existing scalable end-to-end
planning frameworks do not incorporate
risk, such as BackpropPlan (Wu, Say and
Sanner 2017)

We can sample independent noise and
use it to reparametrize stochastic
transitions into deterministic transitions
with added noise (black arrows).

For each batch of forward passes we
estimate the sufficient statistics of the
cumulative reward and use them to
calculate the utility objective.

Notably, due to the reparametrized
transitions, we can leverage auto-
differentiation to update the sequence of
actions (red arrows).

Suppose you have a stochastic node s; 4
Se+1 ~ PC Ise, ar)

S¢+1 blocks the gradient of the objective from
backpropogating to s;.
Reparameterization transforms s, into:

Sev1 = @S, ar, &), & ~ p(er)
where ¢ () is a deterministic function that is
differentiable w.r.t. a; and s;.
Now sampling € = (g, ..., €g) We can generate
samples of Y1 r(s;, ar)
which can be used to estimate sufficient
statistics and in turn the utility objective and its
gradient.

Update actions based on straight-line utility
objective:

H
ug,,(So) = maxUy (Z (g, at))
Qo:H

t=0
= Where U, is the entropic utility:

UX) = %log]E[eﬁX]

= Using Taylor expansion, it can be written in
mean variance form:

U@):Mﬂ+§wﬂﬂ+ow%

= Now f3 can be interpreted as a risk aversion
parameter:
I B =0 induces risk neutral behavior
B >0 (B <0)induces risk-seeking (risk-
averse) behaviors.

= Theoretical results:
Forany R.V. X, Y if
P (X 2Y) = 1 then U(X) 2U(Y).
If ¢ is deterministic then U (X +¢) = U(X) + ¢
Due to the recursive property of entropic
utility (Osogami 2012; Dowson, Morton, and
Pagnoncelli 2020), the optimal utility
satisfies the Bellman equation:

Up(sp) = Z’;gﬁUshH(r(Sh: ap) + Uﬁ+1(5h+1))

IV. By result|and Ill, the optimal utility Ug(so)
satisfies:
Ug (s0) = ugy,(so)

= Tested on two environments:
I.  Navigation (Faulwasser and Findeisen

2009):

Cumulative Reward Distributions
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Observations:

Lower 8 (more
risk-aware) yields
lower cumulative
reward variance

. Lower 3 leads to

smaller cumulative
reward

. Lower f3 leads to

less goal state
misses

. Risk-aware

navigation results
in agent avoiding
highly stochastic
region.

(Veh 1985):

Water Level

Average Water Level

Overflows (%)

—1077
—107°
-1075
—107*
—1073

Observations:

0.67
0.65
0.54
0.61
0.17

Lower 8 (more risk-aware) leads to less
variance cumulative reward

Lower S increased cumulative reward
Lower S leads to less overflows in the

reservoir domain

Risk-aware reservoir sets the water

levels lower.




