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Introduction

Given a finite-horizon MDP without discount fac-
tor () and reward (R) with a set of trajectories,
§ = (71,72, ..., Tlg) }, how do we jointly estimate

o In a Markov decision process (MDP)
environment, inverse reinforcement learning
(IRL) primarily seeks to explain human
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" " Difference in value function: y, = 0.8; learnt y, = 0.8
behaviour, i.e., learn reward. I T Al : I S
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(a) VFD (our approach) (b) VFD (baseline)

Difference in value function: y, = 0.8; assumed y, =0.75
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and theoretical intuitions show variability of
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learnt reward and optimal policy as discount
factor () changes.
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Objective I
max — égp(T) log p(7)

e A feature-based gradient updates for
simultaneous estimation of reward and
discount factor.

Constraints (subject to:)
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Given ground-truth policy (7*) with a discount p(7) >0 5 : N | N
factor (v*). If v is assumed in learning, i.e, v* # | N | | 3= = = =y 3o = = =y e The utility-based approach facilitated the
~E learnt trajectories might differ from ground- Following a Lagrangian and solution of first-order Ao . do . L concurrent estimation of discount factor and
truth. optimality equation, we evolve the following rela- — B B reward in a model-based entropy framework.

tion: : e A suggestion for future work is sample
Motivating Example p(7) x e VOTO(Tit) — QU(7) complexity analysis of our approach given the

VFED loss metric on real-world data.

Mountain-Car Driving
Goal: find 6" and ~* that maximizes the likeli-
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