Discount Factor Estimation in Inverse Reinforcement Learning Babatunde H. Giwa, Chi-Guhn Lee

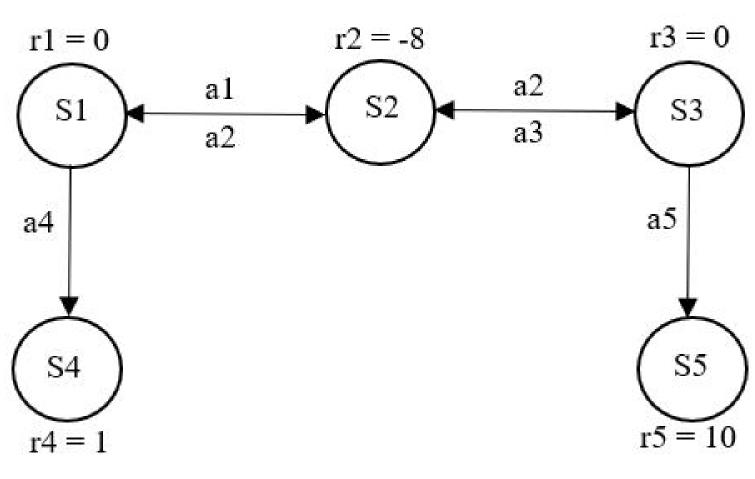
Introduction

- In a Markov decision process (MDP) environment, inverse reinforcement learning (IRL) primarily seeks to explain human behaviour, i.e., learn reward.
- In the IRL framework, experimental studies and theoretical intuitions show variability of learnt reward and optimal policy as discount factor (γ) changes.
- A feature-based gradient updates for simultaneous estimation of reward and discount factor.

Significance of Discount Factor

Given ground-truth policy (π^*) with a discount factor (γ^*). If γ^L is assumed in learning, i.e., $\gamma^* \neq 1$ γ^L , learnt trajectories might differ from groundtruth.

Motivating Example



MDP with 5 states.

The optimal policies (originally π^* , learnt as $\tilde{\pi}^*$) differed when the discount factor varied as seen in state S_1 .

	Original (($\gamma = 0.35$)) Learnt ($\tilde{\gamma}$			$\tilde{\gamma} = 0.9)$
State	Reward	π^*	Reward	$ ilde{\pi}^*$
S_1	0	a_4	0.1	a_2
S_2	-8	a_3	0.5	a_3
S_3	0	a_5	5.0	a_5
S_4	1	_	-0.1	_
S_5	10	—	9.9	_

Problem Definition

Given a finite-horizon MDP without discount factor (γ) and reward (R) with a set of trajectories, $\xi = \{(\tau_1, \tau_2, \dots, \tau_{|\xi|})\},$ how do we jointly estimate discount factor and reward?

Mathematical Model for Solution Approach

Objective

$$-\sum_{\tau\in\xi}p(\tau)\log p(\tau)$$

Constraints (subject to:)

max

$$\sum_{\substack{\tau \in \xi } \sum_{t=0}^{|\tau|} \gamma^t p(\tau) \phi(\tau; t) = \frac{1}{|\xi|} \sum_{\substack{\tau \in \xi } \sum_{t=0}^{|\tau|} \gamma^t \phi(\tau; t)$$
$$\sum_{\substack{\tau \in \xi } p(\tau) = 1$$
$$p(\tau) \ge 0$$

Following a Lagrangian and solution of first-order optimality equation, we evolve the following relation:

$$p(\tau) \propto e^{\sum_{t=0}^{|\tau|} \gamma^t \theta^{\mathsf{T}} \phi(\tau;t)} = e^{U(\tau)}$$

Goal: find θ^* and γ^* that maximizes the likelihood of demonstration set (ξ) :

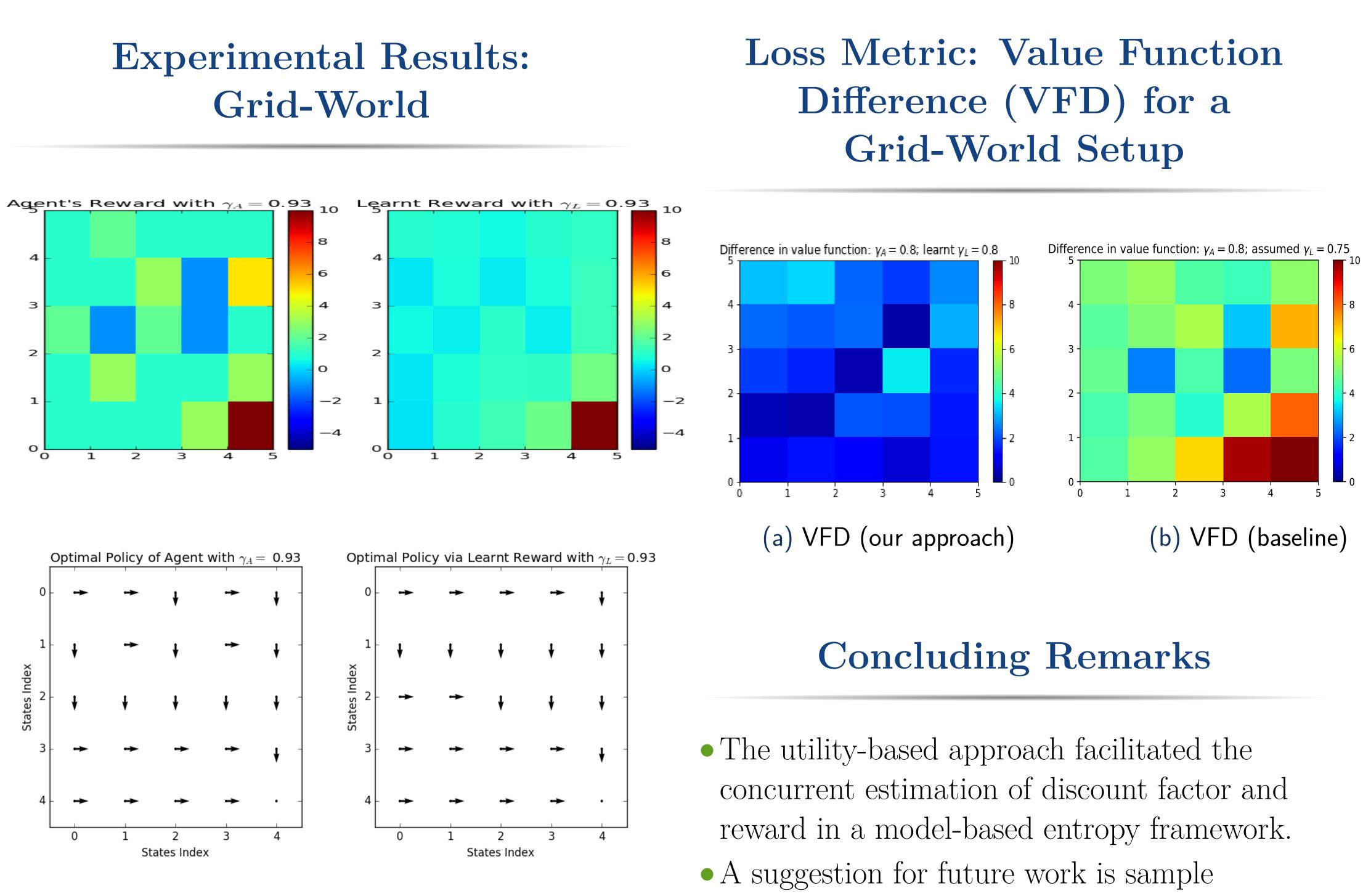
$$\theta^*, \gamma^* = \underset{\theta, \gamma}{\operatorname{arg\,max}} \frac{1}{|\xi|} \prod_{\tau \in \xi} \frac{e^{\sum_{\tau \in \xi} \sum_{t=0}^{|\tau|} \gamma^t \theta^{\intercal} \phi(\tau; t)}}{Z}$$

Gradient Equations:

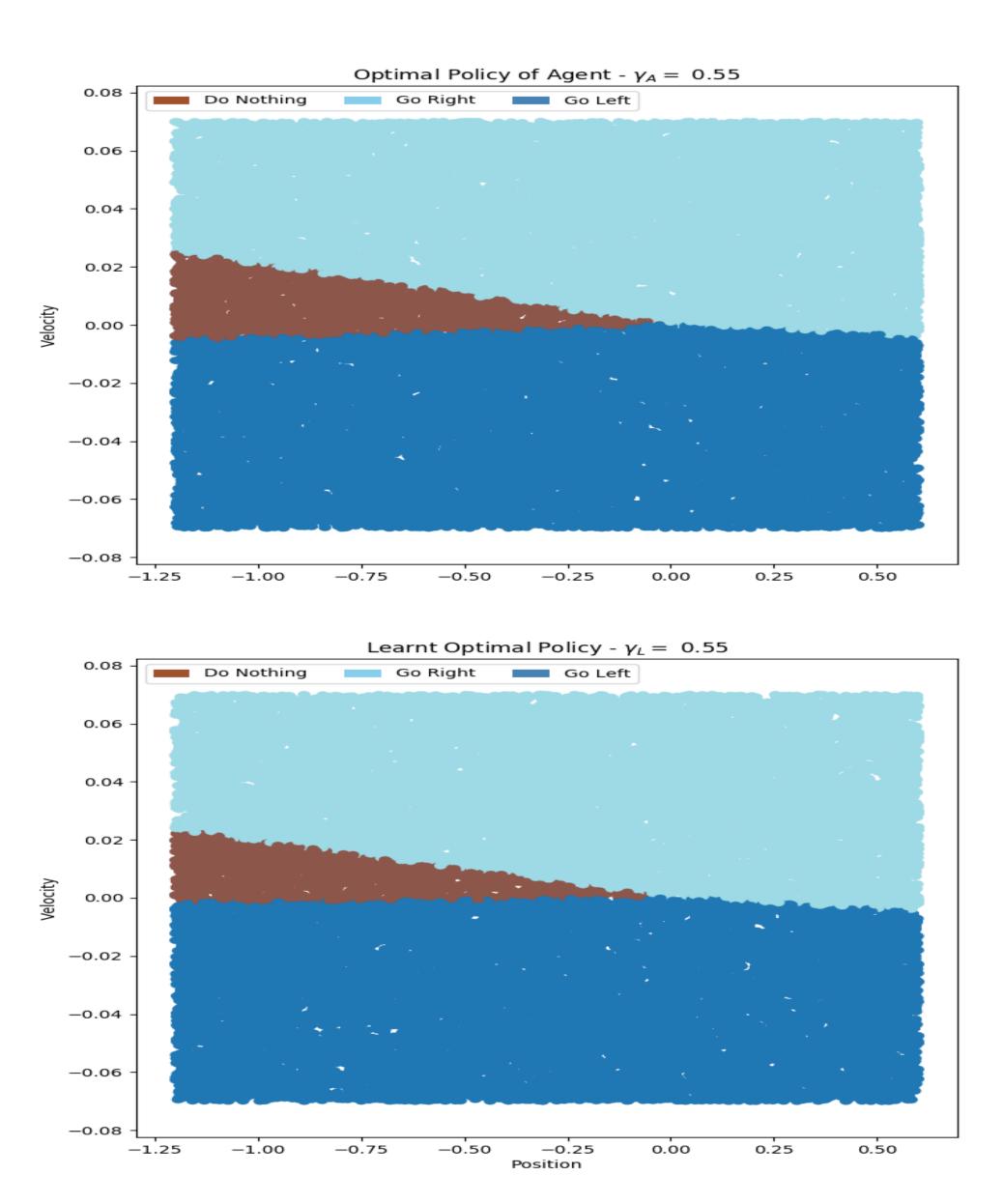
$$\begin{split} \nabla_{\theta} &= \frac{1}{|\xi|} \mathop{\underset{\tau \in \xi}{\overset{[\tau]}{\underset{t=0}{\sum}}} \gamma^{t} \phi(\tau; t) - \mathop{\underset{s \in S}{\overset{[\tau]}{\underset{t=0}{\sum}}} \gamma^{t} P(s_{t}|\theta, \gamma) \phi(s_{t})} \\ \nabla_{\gamma} &= \frac{1}{|\xi|} \mathop{\underset{\tau \in \xi}{\overset{[\tau]}{\underset{t=0}{\sum}}} t\gamma^{t-1} \theta^{\mathsf{T}} \phi(\tau; t) \\ &- \mathop{\underset{s \in \xi}{\overset{[\tau]}{\underset{t=0}{\sum}}} t\gamma^{t-1} P(s_{t}|\theta, \gamma) \theta^{\mathsf{T}} \phi(s_{t}) + \lambda \end{split}$$

where λ is a penalization to enforce boundary conditions on discount factor. With a learning rate (α) , we define our update rules as follows:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta}$$
$$\gamma \leftarrow \gamma + \alpha \nabla_{\gamma}$$



Mountain-Car Driving



- Ziebart, B.D., Bagnell, J.A. and Dey, A.K., 2010. Modeling interaction via the principle of maximum causal entropy. In ICML. • Ng, A. Y., and Russell, S. J. 2000. Algorithms
- for inversereinforcement learning. InIcml, volume 1, 2.
- Reinforcement learn-ing: An introduction. MIT press.

complexity analysis of our approach given the VFD loss metric on real-world data.

Key References

• Sutton, R. S., and Barto, A. G. 2018.