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•Constrained MDPs models safety
requirements explicitly.

•How to learn without violating
the safety constraints?
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Cost-model-irrelevant
Abstraction

M̄φ = 〈S̄,A, P̄ , R̄, µ̄, C̄, ĉ〉

φ : S→ S̄

M = 〈S,A, P, R, µ, C, ĉ〉

φ preserves the expected cost:
V
π,M̄φ

C̄
(µ̄) = V π,MC (µ)

•The abstract policy πA is safe
but might be suboptimal.

•The ground policyπG can reach optimality
but has no safety guarantees.

Not everything is relevant for safety
To prevent a taxi from running out of fuel it is not necessary to know the position of the passenger.
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Factored MDPwith cost function related to safety

p

t

b

a

p′

t ′

b′

r

c

Abstraction of the safety dynamics

Find more at:
https://tdsimao.github.io/publications/Simao2021alwayssafe/

Uncertainty set
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Σ =
{
T ∈ P(S) |

‖T̂ (· | s, a)− T (· | s, a)‖ ≤ e(s, a)︸ ︷︷ ︸
≈ 1
N(s,a)

}
Σ contains the true transition function
with high probability.

Conservative policy
Tight safety constraint until ground pol-
icy is safe in all probable CMDPs (Σ).
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https://tdsimao.github.io/publications/Simao2021alwayssafe/

