

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

PROBLEM AND MOTIVATION

• Markov Decision Processes [4]: a sequential decision problem defined by the 6-tuple

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma, \mu \rangle.$$

Given a Markovian policy π , the policy-dependent value of each state is defined as:

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s, a_{t} \sim \pi(s_{t}) \right]$$

The goal of an autonomous agent is to find the policy π maximizing the **value function** in each state:

$$\pi^*(s) = \arg\max_{\pi} V^{\pi}(s) \quad \forall s \in \mathcal{S}$$

• Online Planning: find the locally-optimal policy in a specific environment state by using a (possibly approximate) model of the environment to simulate trajectories

$$\pi^*(s) = \max V^{\pi}(s), \quad \forall s \in \mathcal{S}$$

Stochastic	environment			
Transition	model	${\cal P}$	is	
stochastic				

Continuous state-space The set of possible successor states is infinite

OPEN LOOP PLANNING

- **Goal**: find the optimal sequence of actions to perform starting from the current state, regardless of the intermediate states visited, averaging between them [2].
- The value of the sequence τ starting from the state s is defined as:

$$V_{OL}(s,\tau) = \mathbb{E}\left[\sum_{t=0}^{m} \gamma^{t} r_{t} \mid s_{0} = s, a_{t} \in \tau\right]$$

• The optimal state-action function is

$$Q_{OL}^*(s,a) = \max_{\tau_a} V_{OL}(s,\tau_a)$$

• Since $Q_{OL}^*(s, a) < Q^*(s, a)$, open-loop planning suffers a loss of performance, but limits the size of the search tree.

CONTRIBUTIONS

• Temporal Difference update to reduce variance in returns from roll-out phase in Open-Loop MCTS algorithm.

$$Q(\mathcal{N}', a) \leftarrow Q(\mathcal{N}', a) + \alpha(\mathcal{N}'.r + \gamma\Delta - Q(\mathcal{N}', a))$$

• **Real-world application**: application of the Q-Learning Open Loop Planning algorithm to Formula 1 pit-stop strategy identification, using real-world F1 lap times datasets.

ONLINE PLANNING FOR F1 RACE STRATEGY IDENTIFICATION

DIEGO PICCINOTTI,

AMARILDO LIKMETA, NICOLÒ BRUNELLO, MARCELLO RESTELLI diego.piccinotti@{mlcube.com, mail.polimi.it}

FORMULA 1 RACE STRATEGY IDENTIFICATION

Problem modeling-

- **Problem**: decide, at each lap, whether to stop the car to change tires.
- **Constraints**: limited compound availability and at least two different compounds are to be used during the race.

We model a single-agent MDP

- **State**: features for each driver plus global race boolean flags.
- Actions: stay on track or pit-stop for one of the available compounds.
- **Reward**: negative normalized lap time.
- **Transition model**: Lap time simulator from [1], adapted to lap-by-lap planning
- **Discount factor**: set to 1, to consider full-episode outcome.
- Constrain actions to follow F1 rules on tire changes.

-Main difficulties-

- **Continuous state-space**: cumulative race time is part of the state variables.
- **High stochasticity**: driver interaction, errors and random events.
- **Return difference between actions**: pit-stop actions cost around 30s more than staying on track.
- Good policies need to **balance pit-stop time cost** with performance given by fresh tires.

For the transition model, we adapt a probabilistic lap-time simulator from literature [1].

Original work features

Extensions

Simulator diagram, taken from [1]

Planner performance comparison - Sebastian Vettel, races from 2015-2018

Saacon	Track	ECDNI	Truco	VCE	Sama UCT	Domor LICT			Panking Cain
Season	ITACK	ESFIN	Irue	VSE	Salsa UCI	rowerUCI	ULUCI	QL-OL UCI	Kaliking Gain
2015	Japan	$4576.01{\pm}1.0$	4577.52 ± 1.0	$4575.34{\pm}1.3$	$4575.36{\pm}1.2$	$4583.25{\pm}2.4$	$4577.99{\pm}1.1$	4570.35±1.0*	0.4
2016	Japan	$4507.85 {\pm} 1.0$	$4507.54{\pm}0.7$	$4549.01{\pm}1.3$	$4508.90{\pm}0.8$	4524.45 ± 1.2	$4519.03{\pm}1.3$	4505.35±0.9*	0.1
2017	Australia	$4470.39{\pm}1.7$	$4466.22{\pm}1.9$	$4477.29 {\pm} 1.3$	$4466.56{\pm}2.9$	$4474.12{\pm}2.2$	$4479.90{\pm}2.2$	4459.71±2.4*	-1.3
2017	Spain	5202.42 ± 1.4	5209.89 ± 1.3	$5207.94{\pm}1.1$	$5196.38{\pm}2.1$	5200.83 ± 2.0	5211.05 ± 1.1	5188.05±1.3*	0.1
2017	Austria	$4525.88{\pm}1.2$	$4430.84{\pm}1.7{*}$	$4491.66{\pm}1.9$	$4476.43{\pm}2.8$	$4444.38{\pm}2.4$	$4484.14{\pm}1.8$	$4465.85 {\pm} 2.9$	-2.4
2017	Belgium	$4265.4{\pm}0.7$	$4256.44{\pm}1.0$	$4236.0 {\pm} 0.6^*$	$4255.98{\pm}0.7$	$4259.52{\pm}0.7$	$4260.24{\pm}1.0$	4246.09±0.7	2.9
2017	Russia	$4419.98{\pm}1.3$	$4412.87 \pm 1.2^*$	$4428.62{\pm}2.4$	$4425.10{\pm}2.1$	$4437.00{\pm}1.3$	$4430.93{\pm}1.7$	$4421.54{\pm}1.3$	0.0
2018	China	$5140.7 {\pm} 0.9$	$5134.01{\pm}1.0$	$5095.34{\pm}2.0{*}$	$5099.33{\pm}1.5$	$5128.63 {\pm} 0.9$	$5113.31{\pm}2.6$	$5098.93{\pm}1.5$	4.2
2018	Italy	$3909.37 {\pm} 1.9$	$3898.38 \pm 1.9^*$	$3943.95{\pm}1.9$	3907.22 ± 1.4	$3918.42{\pm}1.3$	$3911.24{\pm}1.3$	3903.67±1.5	-0.3
2018	Brazil	$4678.24{\pm}2.1*$	4700.36 ± 2.1	4711.61 ± 1.7	4692.7 ± 3.1	4699.25 ± 1.7	$4706.94{\pm}1.5$	4686.32±2.9	2.0

Sample Race Strategy from Pirelli [3]

• Lap time is computed as sum of contributes modeled independently. • Each contribute is modeled with a probabilistic approach.

• Specify actions for each driver lap by lap.

• Dynamically add Safety Car events during simulation.

end while end procedure else end if end while return \mathcal{N} end procedure $\Delta \leftarrow 0$ $s \leftarrow s$ end while return Δ end procedure end procedure else end if

REFERENCES

[1]	Alexander
	Lienkamp
	tic effects
	10(12), 202
[2]	Erwan Le
	manuel Ra
	Proceeding
	cial Intellig
	ences on A
[3]	Pirelli Mot
	com/pire
	line;].
[4]	Richard S
	troduction.

Q-LEARNING OPEN LOOP PLANNING

```
procedure OLSEARCH(s_0)
     Create root node \mathcal{N}_{0,0} from state s_0
     while within computational budget do
          \mathcal{N}_{d,i}, s \leftarrow \text{TREEPOLICY}(\mathcal{N}_{0,0})
          \mathcal{V}(\mathcal{N}_{d,i}) \leftarrow \text{ROLLOUT}(\mathcal{N}_{d,i},s)
          \mathsf{BACKUP}(\mathcal{N}_{d,i})
     return BESTCHILD(\mathcal{N}_{0,0})
procedure TREEPOLICY(\mathcal{N})
     while \mathcal{N} not terminal do
          if \mathcal{N} not fully expanded then
                return EXPAND(\mathcal{N})
                \mathcal{N} \leftarrow \text{BestChild}(\mathcal{N}, C_p)
procedure ROLLOUT(\mathcal{N}, s)
     while s is non-terminal do
          Choose a \in A(s) according to rollout strategy
          Generate next state s' and reward r
          \Delta \leftarrow \gamma \Delta + r
procedure BESTCHILD(\mathcal{N}, c)
     C(\mathcal{N}) denotes children nodes of \mathcal{N}
     C(\mathcal{N}, a) denotes the child of \mathcal{N} corresponding to action a
                                                        2\ln\mathcal{N}.n
     return arg max \mathcal{Q}(\mathcal{N}, a) + c_{\mathcal{N}}
                                                      \overline{C}(\mathcal{N},a).n
procedure BACKUP(\mathcal{N}, V)
     C'(\mathcal{N}) denotes explored children nodes of \mathcal{N}
     \mathcal{N}' \leftarrow \text{parent of } \mathcal{N}
     \mathcal{N}.n \leftarrow \mathcal{N}.n + 1
     while \mathcal{N}' is not null do
          if \mathcal{N} is leaf then
                \Delta \leftarrow \mathbf{V}
               \Delta \leftarrow \max_{a' \in C'(\mathcal{N})} Q(\mathcal{N}, a')
          Q(\mathcal{N}', a) \leftarrow Q(\mathcal{N}', a) +
                         \alpha(\mathcal{N}'.r + \gamma\Delta - Q(\mathcal{N}', a))
          \mathcal{N}'.n \leftarrow \mathcal{N}'.n + 1
          \mathcal{N} \leftarrow \mathcal{N}'
          \mathcal{N}' \leftarrow \text{parent of } \mathcal{N}
```

r Heilmeier, Michael Graf, Johannes Betz, and Markus o. Application of monte carlo methods to consider probabilisin a race simulation for circuit motorsport. *Applied Sciences*,

ecarpentier, Guillaume Infantes, Charles Lesire, and Emachelson. Open loop execution of tree-search algorithms. In gs of the Twenty-Seventh International Joint Conference on Artifigence, IJCAI-18, pages 2362–2368. International Joint Confer-Artificial Intelligence Organization, 7 2018.

otorsport. ItalianGP pit stop strategies. https://twitter. ellisport/status/1036169705634054144,2018.[On-

Sutton and Andrew G Barto. Reinforcement learning: An in-MIT press, 2018.