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PROBLEM AND MOTIVATION FORMULA 1 RACE STRATEGY IDENTIFICATION

Q-LEARNING OPEN LOOP PLANNING

Problem mOdehng procedure OLSEARCH(s)

Create root node Ny ¢ from state sg
while within computational budget do
Ng.i, s < TREEPOLICY(No,0)
V (Ng.i) < ROLLOUT(N ;, s)
BACKUP(Ng.;)
end while
return BESTCHILD(N) o)
end procedure
procedure TREEPOLICY(N)

e Markov Decision Processes [4]:
problem defined by the 6-tuple

M=(S5 AP, R,v,u).

a sequential decision

* Problem: decide, at each lap, whether to stop the car to change tires.
e Constraints: limited compound availability and at least two different compounds are to be used during the race.

Given a Markovian policy 7, the policy-dependent value

of each state is defined as: We model a single-agent MDP

o0 ®

State: features for each driver plus global race boolean flags.

V7(s) =E;, E vire | so = s, ar ~ 7(s¢) e Actions: stay on track or pit-stop for one of the available compounds. while A not terminal do
L t=0 - e Reward: negative normalized lap time. if ' not fully expazfgd then
. . . . EXPAND
, , , ¢ Transition model: Lap time simulator from [1], adapted to lap-by-lap plannin return
The goal of an autonomous agent is to find the policy 7 : b . .[ ! b p=oy=ap b 5 else
o . 9. . e Discount factor: set to 1, to consider full-episode outcome. N <+ BESTCHILD(, C))
maximizing the value function in each state: , , _ 4if
e Constrain actions to follow F1 rules on tire changes. end 1
s s end while
m(s) =arg max V" (s) VseS return A

s
end procedure

procedure ROLLOUT(N, s)

Online Planning: find the locally-optimal policy in a Main difficulties

specific environment state by using a (possibly approx- 7 @h;eos - noncterminal do
imate) model of the environment to simulate trajectories MONZA - POSSIBLE RACE STRATEGIES 72 Choose a € A(s) according to rollout strategy
. - . . : : : THE QUICKEST 20'@5 23'33( Generate next state s’ and reward r
" (s) =maxV"™(s), VseS e Continuous state-space: cumulative race time is part of ONE-STOPPER A — vA 47
" the state variables. s ¢ s
2"° QUICKEST = -~ .
Stochastic environment Continuous state-space e High stochasticity: driver interaction, errors and random ONE-STOPPER (%) :éltclll :Ivlhile

events.

Return difference between actions: pit-stop actions cost
around 30s more than staying on track.

* Good policies need to balance pit-stop time cost with
performance given by fresh tires.

Transition model P is
stochastic

33-38 LAPS

The set of possible succes-
sor states is infinite o

15-20 LAPS

end procedure
procedure BESTCHILD(/N, c)
C'(N') denotes children nodes of N/

C' (N, a) denotes the child of N/ corresponding to action a
2In N'.n
C(N,a).n

WARMER CONDITIONS o
ONE-STOPPER .

CIRCUIT INFORMATION

BRAKING 34

DOWNFORCE vVyv

SUPERSOFT

return arg max Q(N, a) + c\/
OPEN LOOP PLANNING a

end procedure

procedure BACKUP(N, V)
C’(N) denotes explored children nodes of N/
N’ « parent of N/

Sample Race Strategy from Pirelli [3]
Goal: find the optimal sequence of actions to perform

starting from the current state, regardless of the interme- Lap time simulator

diate states visited, averaging between them [2]. N Non 1
The value of the sequence 7 starting from the state s is For the transition model, we adapt a probabilistic lap-time simulator from literature [1]. Whlilfe /\%511862?:1?;? do
defined as: AV
. 7 ] Race simulation else ,
Vor(s,7) =E Z Vel so=8,a; €T 3 Pit stops (“out-lap” part) Original work features A o €OT N QWN,d’)
&3 T d if
L t=0 _ s : - . . . . end i
- £ & il “mf model =| o Lap time is computed as sum of contributes modeled independently. QWN",a) + QWN",a) +
: : S S > = . . . N
The optimal state-action function is 2 % - g S —— N %‘ e FEach contribute is modeled with a probabilistic approach. - ﬁf /(J\/ "r+ A — QN a))
e o ) Y M — n+1
Q*OL (87 CL) — H#&X VOL (87 Ta) %o % = Overtaking model & Extensions N +— N’
) g v N’ « parent of N
Since Q% (s,a) < Q*(s, a), open-loop planning suffers a & I Pit stops (”1|n-1ap” part) e Specity actions for each driver lap by lap. end while

end procedure

loss of performance, but limits the size of the search tree.  Dynamically add Safety Car events during simulation.

Simulator diagram, taken from [1]
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