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Abstract

State abstraction enables sample-efficient learning and bet-
ter task transfer in complex reinforcement learning environ-
ments. Inspired by the benefits of state abstraction in hierar-
chical planning and learning, we propose RePReL, a hierar-
chical framework that leverages a relational planner to pro-
vide useful state abstractions for learning. State abstraction is
especially beneficial in relational settings, where the number
and/or types of objects are not fixed apriori. Our experiments
show that RePReL framework not only achieves better per-
formance and efficient learning on the task at hand but also
demonstrates better generalization to unseen tasks. It has been
argued that for human-level general intelligence, the ability
to detect compositional structure in the domain (Lake et al.
2017) and form task-specific abstractions (Konidaris 2019) is
necessary. Our RePReL framework takes a step in that direc-
tion by formalizing the prior domain knowledge that gives
rise to effective task-specific abstractions.'

1 Introduction

Planning and Reinforcement Learning have been two ma-
jor thrusts of AI aimed at sequential decision making.
While classical relational planning focuses on composing
sequences of high level actions offline before any execu-
tion, reinforcement learning interleaves planning and execu-
tion and is typically associated with reactive domains with
unknown dynamics. We describe an integrated architecture
we call “RePReL,” which combines relational planning (RP)
and reinforcement learning (RL) in a way that exploits their
complementary strengths and not only speeds up the conver-
gence compared to a traditional RL solution but also enables
effective transfer of the solutions over multiple tasks.

In many real world domains, e.g., driving, the state space
of offline planning is rather different from the state space of
online execution. Planning typically occurs at the level of
deciding the route, while online execution needs to take into
account dynamic conditions such as locations of other cars
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and traffic lights. Indeed, the agent typically does not have
access to the dynamic part of the state at the planning time,
e.g., future locations of other cars, nor does it have the com-
putational resources to plan an optimal policy in advance
that works for all possible traffic events.

The key principle that enables agents to deal with these
informational and computational challenges is abstraction.
In the driving example, the high level state space consists
of coarse locations such as “O’hare airport” and high level
actions such as take “Exit 205,” while the lower level state
space consists of a more precise location and velocity of the
car and actions such as turning the steering wheel by some
amount and applying brakes. Importantly, excepting occa-
sional unforeseen failures, the two levels operate indepen-
dently of each other and depend on different kinds of infor-
mation available at different times. This allows the agent to
tractably plan at a high level without needing to know the
exact state at the time of the execution, and behave appro-
priately during plan execution by only paying attention to a
small dynamic part of the state.

The key contribution of the current paper is the RePReL
architecture, which consists of a high level relational planner
and a low level reinforcement learner. The high level planner
is itself hierarchical that allows it to further take advantage
of multi-level abstractions. It plans to achieve its goal using
a sequence of subgoals, which are passed onto the reinforce-
ment learning agent. The reinforcement learning agent then
tries to reach its assigned sub-goal with minimum path cost.
To do this effectively, we adapt first-order conditional influ-
ence (FOCI) statements (Natarajan et al. 2008) to specify
bisimilarity conditions of MDPs (Givan, Dean, and Greig
2003), which in turn help justify safe and effective abstrac-
tions for reinforcement learning (Dietterich 2000; Ravindran
and Barto 2003).

2 Relational Planning and Reinforcement
Learning
We define goal-directed relational MDP (GRMDP) as
(S, A, P,R,v,G), which is an extension of RMDP defini-

tion of Fern, Yoon, and Givan (2006) for goal-oriented do-
mains by adding a set of goals G that the agent may be asked



to achieve. The reward function R provides the reward (or
cost) of taking a step in the environment, regardless of the
goal. A problem instance for a GRMDP is defined by a pair
(s € S,g € G), where s is a state and g is a goal condition,
both represented using sets of literals, i.e., positive and/or
negative atoms. A solution is a policy that starts from s and
ends in a state satisfying g with probability 1.

RePReL framework proposes that the GRMDPs can be
solved using a combination of planning and RL in 3 stages:

1. Planning: Use the hierarchical planner to decompose the
goal of the GRMDP to smaller tasks.

2. Abstraction: Get task specific abstractions.

3. RL: Learn RL agents to perform these tasks in abstract
state space

Planning: The hierarchical planner decomposes goals
into subgoals recursively to generate a sequence of planning
operators. A key difference to typical hierarchical planners
is that in our case, planning operators do not execute the
atomic action. Instead, these operators are in turn imple-
mented as an RL agent that learns to solve them by executing
a policy. Several prior works have explored similar idea of
combining a planner and RL agents to solve complex prob-
lems which have some notion of temporally extended ac-
tions or task hierarchies (Grounds and Kudenko 2005; Yang
etal. 2018; Lyu et al. 2019; Jiang et al. 2019; Eppe, Nguyen,
and Wermter 2019; Illanes et al. 2020). Our RePReL frame-
work diverges from previous work in two ways: first, we
use the relational MDP representation expressed above, and
second, we propose an approach to define task-specific state
abstractions, an important contribution of this work.

Abstraction: Safe and efficient state abstraction tech-
niques have been studied extensively in RL (Li, Walsh, and
Littman 2006). They have been particularly useful for multi-
task and transfer learning problems (Walsh, Li, and Littman
2006; Sorg and Singh 2009; Abel et al. 2018). We are in-
spired by the task-specific abstractions of MAXQ (Diet-
terich 2000) and adopt the bisimulation framework of Givan,
Dean, and Greig (2003) and Ravindran and Barto (2003),
which has been called “model agnostic abstraction” in Li,
Walsh, and Littman (2006). An abstraction function is called
model-agnostic when the the immediate reward distribution
and the transition dynamics of the abstract MDP are the
same as that of the original MDP 2.

In RMDPs, we need to reason about how the actions influ-
ence the state predicates and how rewards are influenced by
goal predicates and actions to decide which literals should
be included and excluded in the abstraction. We capture this
knowledge using First-Order Conditional Influence (FOCT)
statements (Natarajan et al. 2008), one of the many vari-
ants of statistical relational learning languages (Getoor and
Taskar 2007; Raedt et al. 2016). Each FOCI statement is of
the form: “if condition then X; influence X5”, where,
condition and X; are a set of first-order literals and
X9 is a single literal. It encodes the information that lit-
eral Xo is influenced only by the literals in X; when the
stated condition is satisfied. For RePReL, we simplify
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the syntax and extend FOCI to dynamic FOCI (D-FOCI)
statements. In addition to direct influences in the same time
step, D-FOCI statements also describe the direct influences
of the literals in the current time step on the literals in the
next time step. To distinguish the two kinds of influences,
we show a +1 on the arrow between the sets of literals to
capture a temporal interaction, as shown below.

operator : {p(X1),q(X1)} N a(Xy)

It says that, for the given operator, the literal ¢(X;) in
the next time step is directly influenced only by the literals
{p(X1), q(X1)}. Following the standard DBN representation
of MDP, we allow action variables and the reward variables
in the two sets of literals. To represent unconditional influ-
ences between state predicates, we skip the operator.

The D-FOCI statements can be viewed as relational ver-
sions of dynamic Bayesian networks (DBNs) and have a
similar function of capturing the conditional independence
relationships between domain predicates at different time
steps. While the planner works in relational representations,
the reinforcement learning operates at a propositional level.
The propositionalization proceeds by instantiating each D-
FOCI statement with generic objects yielding a structure
equivalent to a propositional DBN. A model-agnostic ab-
straction is derived for each operator by iteratively adding
the literals that influence the relevant literals through all ac-
tions starting with the reward variables. Theorem 1 in Kokel
et al. (2021) shows that if the MDP satisfies the D-FOCI
statements with any fixed depth unrolling, then the corre-
sponding model-agnostic abstraction has the same optimal
value function as the fully instantiated MDP.

RL: The hierarchical planner assumes a relational de-
terministic model of operators, whereas the reinforcement
learner allows stochastic actions. Learning of the RL agents
for each planning operator can thus proceed with abstract
state representation with guarantees of optimality.

Our empirical evaluations on 4 domains show that the
proposed task specific abstraction using the D-FOCI state-
ments have three advantages: 1. With abstract state represen-
tation, the state space is reduced and hence RePReL achieves
better sample efficiency over other methods, 2. With task-
specific abstractions, RePReL. demonstrates efficient trans-
fer across task, 3. With the propositionalization for FOCI
statements, RePReL illustrates zero-shot generalization ca-
pability in some cases.

3 Conclusions

We presented a framework that seamlessly combines plan-
ning and RL. The key intuition is to employ the combina-
tion of a planner and a relational language to define task-
specific abstractions that can be effectively and efficiently
exploited by a RL agent. Our empirical results across a va-
riety of tasks demonstrates the efficacy and generalization
capabilities of the proposed approach. Extending the work
to continuous state-action spaces, allowing for richer human
interaction and scaling up to large tasks remain interesting
future directions.
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