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Abstract

One of the main challenges in AI is performing dynamic
tasks by using approaches that efficiently predict the environ-
ment’s future outcomes. State-of-the-art planners can reason
effectively with symbolic representations of the environment.
However, when the environment is continuous and unstruc-
tured, manually extracting an ad-hoc symbolic model to per-
form planning may be infeasible. Deep Reinforcement Learn-
ing is known to automatically learn compact representations
of the state space through interaction with the environment.
However, it is not suitable for planning, giving up the ef-
ficiency we would gain by predicting the consequences of
actions. This work focuses on continuous state-space MDPs
and proposes an approach that naturally combines interac-
tion, symbolic representation learning, and symbolic online
planning. Our system leverages experience-data gained from
the environment to autonomously learn a symbolic planning
model composed of: (1) a symbol grounding model to switch
from continuous to symbolic space and vice versa; (2) a
symbolic transition model; (3) a value function for symbolic
states. This model is used at training time to lead the interac-
tion with the world. At each interaction step, we perform fast
symbolic online planning over a finite horizon to choose the
action to execute in the environment. The success of this strat-
egy in the environment implicitly validates our automatically
extracted symbolic model, since the system is able to effec-
tively plan actions in the original MDP by reasoning only in
the finite and symbolic domain. The approach has been eval-
uated on several continual OpenAI gym environments, ad-
dressing successfully both control problems and games.

Introduction
The ability to make decisions autonomously is a key fea-
ture of artificial intelligence agents. When the agent has to
perform a task in a dynamic and complex environment, its
decision-making capabilities are strictly influenced by what
the agent knows about its environment and how well it can
predict its evolution. Automated planning is centered on
finding a correct plan to solve a specific task, reasoning on
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the knowledge of the scenario, often expressed in a symbolic
form. Just as humans manipulate ideas in their heads in order
to plan their future actions, so do planners with propositional
symbols. In this way, they can easily perform long-term pro-
jections in the future and plan actions accordingly. For ex-
ample a human, or a symbolic planner, can plan the actions
to turn on a car, knowing that: ˝when I turn the key my car
is turned on” - where ‘turn the key’ is an action modifying
the truth value of the symbol ‘turned on’- avoiding modeling
irrelevant details such as the car color, the weather, and so
on. Although this approach can be very performant on sym-
bolic domains (Ghallab, Nau, and Traverso 2016), formaliz-
ing continuous and dynamic environments in such symbolic
form is extremely hard and it is usually manually carried out
by a human expert. On the other hand, there has recently
been an increasing interest in Deep Reinforcement Learning
(DRL) (Arulkumaran et al. 2017). DRL techniques automat-
ically extract from data an effective policy to achieve the task
in the environment, interacting with it through a trial-and-
error process, and they do not require any models of the en-
vironment’s states and transitions. However, by using DRL,
it is not possible to plan over future actions. Moreover, the
policy and the learned model are a black box, given the lack
of explicability of the final result at the end of the training.

This paper proposes an algorithm inspired by both plan-
ning and Reinforcement Learning to automatically extract
a symbolic planning domain for complex dynamic environ-
ments, this allows to exploit the advantages of planning tech-
niques in this particular domains without the need of ex-
pert modeling. We develop an interactive learning algorithm
that maps the environment state to an arbitrary size finite
set of propositional symbols, tackling the symbol ground-
ing problem (Steels 2008), and jointly learns the environ-
ment dynamics over this symbolic space. The system inter-
acts with the environment formalized as a Markov Decision
Process (MDP) over continuous variables. The experience
data gained from the interaction are exploited to learn the
following function approximators: a function for ground-
ing the propositional symbols from the continuous observa-
tions; a value function approximator for evaluating symbolic
states; a transition function approximator over the symbolic
state space to predict the next symbolic states from the pre-
vious one and the corresponding action. This automatically
learned planning domain is used to lead the interaction with



the environment. At each interaction step, we perform on-
line planning (Ghallab, Nau, and Traverso 2016) over a fi-
nite horizon, and we select the first action of the computed
plan as the action to take in the environment.

We evaluate the approach on several OpenAI gym envi-
ronments with continuous state, including control problems
and games. We also perform experiments setting different
sizes for the finite symbols-set modelling the environment.
Experiments show that, with a sufficiently large symbols-
set, it is actually possible to plan the continuous environ-
ment’s actions, reasoning only in the symbolic domain ex-
tracted from data. Furthermore, we show that we can use
the learned planning domain to achieve different tasks in the
same environment, through a reward shaping based on the
learned symbolic representation. Experiments confirm that
the symbolic representation-based reward and the transition
model efficiently guides the agent towards different goals in
the environment.

Related Work
The use of learning approaches for determining compressed
and interpretable representations of the agent environment
has been a very active research topic in the last years. Fol-
lowing this idea in (Garnelo, Arulkumaran, and Shanahan
2016), authors propose an end to end Reinforcement Learn-
ing architecture based on a neural network back-end and
a symbolic front-end for addressing tabular game environ-
ments. In this work, a neural network is used to perform a
symbolic representation of the agent state-space, then the
symbolic state is used to obtain an effective action policy.
The idea of determining a symbolic state to learn a propo-
sitional planning domain is introduced in (Asai and Fuku-
naga 2017; Asai and Kajino 2019; Asai 2019; Asai and
Muise 2020), the learned planner is then used to solve a
puzzle task. The system is based on the use of two differ-
ent AutoEncoders: 1) a State AutoEncoder for the propo-
sitional representation of the image, 2) an Action AutoEn-
coder for obtaining the action transition definition on the
domain. The works by Asai and collegues address the theme
of the stability of symbols, that is, the system’s ability to
maintain the representation unchanged for small perturba-
tions; this goal is obtained by using a State AutoEncoder.
Authors have extended the planner learning algorithm in-
troducing First-Order State AutoEncoder, unsupervised ar-
chitecture for grounding the first-order logic predicates and
facts. In this architecture, each predicate models a rela-
tionship between objects by taking the interpretable argu-
ments and returning a propositional value. A similar task
has been faced in (Suárez-Hernández et al. 2020) using an
unsupervised learning approach. Differently from the previ-
ous works, in (Bonet and Geffner 2019), authors address the
problem of determining the first-order representation from
a non-symbolic input. The model is not learned with deep
learning approaches, but it is extracted from the state-space
structure. The required input is a labeled directed graph.
All the works mentioned so far address environments with
a discrete, even if sometimes complex, setting. Our system
is meant to address also fully continuous and dynamic prob-
lems with multiple continual variables; this allows to address

more problems closer to the real world environment. Differ-
ent kinds of scenarios are addressed in (Dittadi, Drachmann,
and Bolander 2020). In this case, a Variational AutoEncoder
is used to learn relevant features in Atari games given im-
ages as training data. The planning is done with RolloutIW
using the features learned by the VAE. The algorithm proves
that VAEs can learn meaningful representations that can be
effectively used for planning with RolloutIW. Similarly, in
(Corneil, Gerstner, and Brea 2018), an external Variational
AutoEncoder is used to obtain a propositional representa-
tion of the environment’s state space. The propositional state
is then given as input for a tabular Reinforcement Learn-
ing system and a neural network approach for learning state
transitions. The combined architecture is exploited to learn
with improved sample efficiency plans for solving the pro-
posed tasks. Both these works involve the use of external
VAE’s for the states’ propositional encoding. In our work,
the VAE code is directly learned through the reconstruction
error and the Q-network one, creating a symbolic represen-
tation encoded following the task specification. This allows
to have state task-based state representation, useful for rep-
resenting both the environment and the task associated to it.
The idea of determining a model for a dynamic environment
is addressed in (Kurutach et al. 2018). In this paper, authors
present infoGAN, a system based on Generative Adversarial
Networks (Creswell et al. 2018) to learn a plannable repre-
sentation of dynamic problems. This approach identifies in-
termediate observation points in the agent task execution and
the formalization of them in several kinds of symbolic rep-
resentation. However, this approach does not reason about
the action plan, but about intermediate state formalization
for trajectory path planning problems. Finally, in (François-
Lavet et al. 2019), authors present CRAR (Combined Rein-
forcement via Abstract Representations), a hybrid architec-
ture composed of a model-based and a model-free compo-
nent that jointly infer a sufficient abstract representation of
the environment. This is achieved by explicitly training both
the model-based and the model-free components, including
the joint abstract representation. The CRAR agent creates
a low-dimensional representation that captures task-specific
dynamics, even without any reward. This last work intro-
duces an architecture for obtaining a restricted meaningful
abstract representation of the state-space but still relies on a
continuous encoded space; Our work instead relies on a fully
propositional symbolic representation of the environment.

Method
Overview
We consider an agent interacting with an unknown envi-
ronment. The environment is modeled as an infinite hori-
zon Markov Decision Process MDP = {S,A, t, r, γ}. Where
S ⊆ Rn is a continuous state space, A = {a0, a1, .., am} is
a discrete action space, t : S × A → S is the environment
transition function, r : S × A → R is the reward function
and γ is the discount factor. The agent knows the current en-
vironment state st, it can take an action at ∈ A and observe
the action-outcome, namely the new state st+1 ∈ S and a
reward rt+1 ∈ R received by the environment.
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Figure 1: a) global view on the algorithm, b) neural networks trained by the algorithm

We want to learn a planning-based symbolic representa-
tion model of the reference environment interacting with the
MDP. The idea of learning the environment model of MDPs,
alongside the optimal action policy, is not new in Rein-
forcement Learning and is known also as model-based Rein-
forcement Learning (RL) (Moerland, Broekens, and Jonker
2020). Model-based RL algorithms usually learn the tran-
sition function and the reward function from the experience
data gained through the interaction with the environment and
use them to increase sample efficiency and temporal effi-
ciency.

Our purpose in this work is not to increase the efficiency
of the learning process, but to learn another, alternative,
intrinsically different, representation of the same world, as
similar as possible in its essence to a symbolic planning do-
main. Furthermore, we want use this model to effectively
select actions to take in the MDP, so to achieve the desired
task, as expressed by the MDP reward function. More for-
mally, let’s call ap(s) the action chosen by the planner when
the environment is in state s, we want to maximize the ex-
pected cumulative discounted reward obtained by choosing
actions according to the planner.

∞∑
t=1

[
γtr(st, ap(st))

]
st=t(st−1,ap(st−1))

(1)

Let’s consider a symbolic state-space X composed of dX
propositional symbols.

X = {0, 1}dX (2)

At each time instant t, we can think of the observation st as
the realization of a certain situation xt identified by a spe-
cific truth value of the symbols inX . We define a situation as
a boolean dX -dimensional vector x ∈ X , and we can think
of it as the latent symbolic representation of s. Since actions

in A modify the observation that arises from the situation,
we expect them to modify in some cases the underlying sit-
uation as well, and we want to model how this happens. In
other words, we want to find a transition model ts for the
situation-space.

ts : X ×A→ X (3)

This model is conceptually similar to the effects of a PDDL-
like (Ghallab et al. 1998) actions schema: given an action a
and a situation x we want to learn which symbols to delete
and add to x in order to have the next situation x′.

Furthermore, we want to know a measure of how much
being in a particular situation is decisive for achieving the
task in the environment. This is equivalent to know a nu-
meric value function vs over the symbolic space.

vs : X → R (4)

Last but not least, we want learn a grounding method for
the symbols, namely a model e able to return the truth val-
ues of the symbols in every observed state s ∈ S, , and a
function modeling the inverse mapping d.

e : S → X d : X → S (5)

While we want e to be accurate, since understanding the sit-
uation is essential for planning, we do not focus too much on
the accuracy of d, since the more general and compact the
symbolic representation of the situation is, the more varied
are the possible manifestations of it in the environment.

The symbolic planner learned with the interaction can be
seen therefore as a tuple of three functions.

P = {e, d, ts, vs} (6)

Once we have learned P from experience we can use it
to perform online planning during the agent-environment
interaction in the abstract symbolic space. In other words,
we may suggestively say that the agent is able to abstractly



imagine the future, as it is shown in Figure 1(a). Abstract
imagination is a fundamental part of our human intelligence:
as humans we naturally make projections of our future real-
ity by manipulating abstract ideas in our heads and we base
our actions in the real world on those projections. In the
same way the agent, starting from its current state s, can ab-
stract the situation x = e(s), imagine many possible finite-
horizon-evolutions of the episode in its own idea-space, and
choose the action leading to the best ‘story in its head’.

Algorithm
Here we describe the interactive learning method from an
high level point of view, as it is illustrated in Algorithm 1.

Algorithm 1: Interactive learning algorithm
Input: initial state, desired episode reward
Output: P = (e, d, ts, vs)

P = initialize models randomly();
experience buffer = empty buffer();
ε = initialize epsilon();
episode reward = 0 ;
while episode reward ≤ desired episode reward do

s = initial state;
done = False ; . the episode is
ongoing

episode reward = 0 ;
while not done do

mode = epsilon greedy(ε);
if mode == explore then

a = random action();
else

T = decide finite horizon();
a = plan action(P, s, T);

done, s’, r = execute(a);
experience buffer.append(s, a, s’, r);
episode reward += r;
s = s’;
batch = experience buffer.extract batch();
P = train models(P, batch);

ε = decrease epsilon();

The agent interacts with the environment by following a
classic RL scheme. At each step it chooses an action a ∈ A
and executes it in the environment. The action outcome is
the new state s′ ∈ S and the received reward r ∈ R. The
tuple (s, a, s′, r) is the experience acquired through the step
and it is stored in the experience buffer. Then, we train the
models of P with a batch of data extracted randomly from
the experience buffer. In particular, each model is imple-
mented as a feed-forward neural network and is trained on-
line - namely only with the data obtained through experi-
ence - no offline training is required. The action to execute
is chosen with a classic epsilon-greedy exploration strategy:
the agent performs random action choice with probability
ε and abstract online planning with probability 1 − ε. ε is

Figure 2: A neural network with an intermediary layer’s out-
put discretized only in forward propagation

initialized to a large value and it is decreased over time. In
this way, the agent relies more on the planner policy when
the networks output becomes more consistent and robust. In
order to select the action, the planner takes as input the cur-
rent state st and the desired finite planning horizon T , that
is increased as the mean reward grows. It plans future tra-
jectories in the abstract space starting from the current sit-
uation xt = e(st), using the model ts to expand abstract
states for T steps. The symbolic-state trajectories are evalu-
ated using the value function vs, and finally the first action
ap,1 of the computed plan (ap,1, ap,2, ..., ap,T ) is selected
for execution. The planning horizon is also adapted during
training, starting from small length horizon when expansion
and evaluation of plans are more prone to commit errors, and
it is increased as the agent gains experience.

The interaction stops when the agent achieves the task in
the environment by choosing at each step the action returned
by the symbolic planner, namely when the sum of the re-
wards obtained in the last episode reaches a certain desired
cumulative reward value that depends on the task.

Learning the model
In this section we give details about each of the functions
composing the model P = {e, d, ts, vs} and how these are
learned from data.

e: The mapping between the environment state-space to
the symbolic space is implemented using a boolean-output
encoder enet : S → X = {0, 1}dX , where dX is the code
length. Therefore, the encoder output space is composed of
only 2dX possible different codes, and every single code
is a possible interpretation over dX propositional symbols.
The boolean output is obtained by discretizing the sigmoid-
activation function of the last layer with a discretization
mechanism that will be described later.

e(s) = enet(s) (7)

d: A symbolic-input decoder, instead, models the inverse
mapping dnet : X → S. It reconstructs the environment
observation in S from its symbolic representation x.

d(x) = dnet(x) (8)



ts: For the transition function in the symbolic space we
trained a neural network model tnet∆ : X×A→ {−1, 0, 1}d,
that learns the effects of actions on symbols in a PPDL-like
formalism. tnet∆ takes as input the symbolic state x and the
action a, and it predicts which symbols the action modifies
in the state. In particular, the output is discretized in three
possible values: −1 for the symbols to delete from the state,
0 for the symbols that remain unchanged, 1 for the symbols
to add to the state. Finally the next symbolic state x′ is cal-
culated as

ts(x, a) = x+ tnet∆ (x, a) (9)

The discrete tnet∆ output is achieved discretizing in
{−1, 0, 1} the value of a tanh activation function on the out-
put layer.

vs: To express the value of a symbolic state we analyzed
two possible strategies:

1. learning the reward function r over the symbolic space,

2. learning the state-action pair quality function Q over the
symbolic space.

The function Qπ(s, a) is defined as the expected dis-
counted cumulative reward of taking action a in the state
s and then following the policy π. It is commonly used
in model-free Reinforcement Learning algorithms like Q-
learning (Jang et al. 2019). Although learning a Q function
is much harder than learning a reward function, Q describes
how much current actions influence future rewards, bring-
ing much more information than the simple current reward
function. For this reason we implemented the second choice,
even if option one may still be a valid choice.

We define a Q-network taking as input the state in its sym-
bolic form and returning an m-dimensional continuous vec-
tor Qnet : X → Rm, where m is the number of possible
actions, and the i-th component of the output, Qnet(x)i, is
the expected cumulative discounted reward for taking action
ai ∈ A from the symbolic state x ∈ X . To eliminate the
dependency on a we define the value of a symbolic state as

vs(x) = maxiQ
net(x)i (10)

Our system trains therefore three neural network models:
enet, tnet∆ and Qnet, that are shown in Figure 1(b).

Training neural networks with symbolic or discrete lay-
ers Symbolic representations are compatible with sym-
bolic planners, and they are often more interpretable
and more computationally efficient than their continuous
analogs. However, their discrete nature makes it difficult to
be learned with neural networks.

Since discretization is a non-differentiable operation, in
order to use backpropagation we cannot embed discretiza-
tion as a layer in the network. On the other hand, since the
discrete output is used as input by other models, we cannot
discretize the layer outside the network. In fact, if we train
the other models with almost discrete inputs, they will not
predict the expected output when they are fed with perfectly
discrete inputs.

Regarding our approach, we need both discrete and con-
tinuous outputs to be predicted by our system. For these

(a) (b)

Figure 3: (a) the symbolic value model (b) computation of
the transition model losses

reasons, discrete-output layers are trained using a particu-
lar mechanism: both the discretized and the continuous out-
put tensors are maintained in the computational graph; the
former is used during forward propagation, while the latter
is used for backpropagation. This artifice, illustrated in Fig-
ure 2(b), solves both the issues mentioned above, because
we use the continuous tensor for calculating the gradients
necessary for updating the weights and we use the discrete
tensor to feed the next layers of the model.

Another possibility is to use the Gumbel-Softmax (Jang,
Gu, and Poole 2017) as the activation function of the discrete
layers. We tried to use it and we observed that the agent is
able to increase the cumulative episode reward for a while,
but finally fails to reach the desired episode reward value,
even with very large size codings.

Value model training here we describe how we use the
tuple (s, ai, s

′, r) taken by the experience replay to update
the value model, shown in figure 1(a)(b). For sake of clarity,
we use the notation Qnet(x, ai) to indicate Qnet(x)i.

We jointly train the encoder enet and the symbolic q-
network model Qnet minimizing the loss function

Lq(s, ai, s
′, r) = ||Qnet(enet(s), ai)− Vt(s′, r)||2 (11)

Where Vt(s′, r) is the expected cumulative reward accord-
ing to the old Q-network model and it is calculated with the
Bellman equation.

Vt(s
′, r) = r + γmax

ai∈A
Qnet(enet(s′), ai)) (12)

Transition model training Everything in the tuple except
the reward is used to update the transition model also. So
given (s, a, s’), we jointly train enet, dnet and tnet∆ minimiz-
ing two loss functions: (1) the transition prediction squared
error in the symbolic space X , LtX ; (2) the transition pre-
diction squared error in the continuous original space S,



LtS .Figure 3(b) shows how these two errors are calculated.
Let’s call the next symbolic state, as predicted by the transi-
tion model, x′p.

x′p(s, a) = ts(e(s), a) = enet(s) + tnet∆ (enet(s), a) (13)

We want to minimize the distance in the abstract space X
between x′p and the symbolic interpretation of s′: x′ =

enet(s′).

LtX(s, a, s′) = ||x′p(s, a)− enet(s′)||2 (14)

LtS is instead the distance in the continuous space S be-
tween the next state s′ and its reconstruction from x′p
through the decoder: dnet(x′p).

LtS(s, a, s′) = ||dnet(x′p(s, a))− s′||2 (15)

LtS regularizes the learning process of the symbolic rep-
resentation. Notice the output of dnet is used only by this
loss. In principle, we could do without decoding the sym-
bolic states, since the planning component functions are de-
signed to work only with the symbolic representation and
never with the continuous one. In practice, if we do not con-
sider loss LtS , the training finds a local minimum where too
much information is lost in encoding the states with enet. In
fact, according to loss LtX only, the optimal enet and tnet∆
are the constant functions enet = x̄ and tnet∆ = 0, since
this configuration of the models always leads to 0 error in
predicting the next symbolic state. We prevent this degen-
erate solution by using the decoder, so to consider also the
transition prediction error in the continuous space. In fact,
LtS tends to explode when the representation tries to col-
lapse, since the decoder utterly fails in reconstructing dif-
ferent continuous states from the same symbolic representa-
tion.

To recap, LtX tends to approach the representation of
two states that were consecutive in the execution, while LtS
tends to keep in the symbolic representation some features
useful for the reconstruction. The first property will be ex-
ploited for transfer learning, as it will be explained in a next
section. Encoding in some way the ‘temporal’ distance be-
tween two states in the representation is very promising for
planning, since the representation encodes ‘how far’ we are
from reaching a particular state with the agent’s actions. This
means that distance between the current state and a desired
one, in the symbolic space, can be considered itself as a qual-
ity function for planning toward that desired state.

Action selection
Here we describe how the models are used for online plan-
ning. We assume to know the planner functions e, ts and vs,
since they are approximated by the neural networks trained
with data from the experience replay. The planner takes the
current continuous state s0, and a desired planning horizon
T and it has to select the action ensuring to achieve the best
results over the next T future steps.

First the current symbolic state is calculated starting from
s0

x0 = e(s0) (16)

then x0 is expanded using the transition schema ts for ev-
ery possible action a ∈ A. By simulating the actions with
the learned transition-schema, the agent reaches m new dif-
ferent symbolic states x1 = ts(x0, ai). From each of them
the expansion continues for all the possible actions, until the
expanded tree reaches depth T . When the expansion stops
the best trajectory in the tree is calculated as the path with
maximum total value. Hence, the best plan is the sequence
of actions corresponding to the best path of symbolic states.

(ap,1, ap,2, ..., ap,T ) = arg max
(a1,a2,...,aT )

[ i=T∑
i=1

vs(xi)

]
xi=ts(xi−1,ai)

(17)
Finally the first action of the computed plan is selected as

the optimal action to take in the environment and it’s exe-
cuted by the agent.

Transfer learning
A benefit of using planning systems is that they can be re-
used infinite times, in order to calculate a plan for every
possible couple (initial state, final state) in the domain. In
RL instead, since the goal is expressed as a reward function,
changing the goal is not so straightforward, and it consists
of solving another MDP with a different reward function.
Some techniques exist in transfer learning for RL (Zhu, Lin,
and Zhou 2020), such as reward-shaping (Ng, Harada, and
Russell 1999), that allow re-using part of the knowledge ac-
quired solving an MDP 1 = (S,A, t, rG1 , γ) to solve an
MDP 2 = (S,A, t, rG2 , γ), where rG1 is the reward shaped
to guide the agent to the goal G1, and rG2 is another reward
function defined to lead the agent to the goal G2. Regarding
our approach, we would like to investigate if, once we have
learned our symbolic planner P 1 = (e1, d1, t1s, v

1
s) solving

MDP 1, we can use it to guide the agent’s actions towards
a different goal G2; or, in other words, if we can use P 1 to
solve MDP 2.

In principle, we should be able to re-use the grounding
method, e1 and d1, and the transition function t1s, but we
cannot re-use for sure the quality function v1

s , since it de-
pends on rG1 .

Since the symbolic representation tends to map closer
states that were subsequent during execution, we examined
the use of Jaccard distance between symbolic states, accord-
ing the symbolic representation learned for goalG1, to guide
the agent toward goal G2. We call this distance function
Jde1,G2

.

Jde1,G2
(s) = 1− 1/dX

i=dX∑
i=1

|e1
i (s)− e1

i (G2)| (18)

It is the distance between a generic state s, in its symbolic
form according to e1, and the goal G2, also converted in the
same representation through e1.

We tested the use of fe1,G2
as reward function to lead the

agent toward G2, with a generic model-free RL algorithm
and with our learning algorithm.

In the second case, this is equivalent to define a new plan-
ning domain P 2 = {e2, t2s, v

2
s}, initialize the models of P 2



(a) (b) (c)

(d) (e) (f)

Figure 4: Figure (a,b,c,d) show results on different continual gym environments as: Cartpole, Lunar Lander, Acrobot, Space
Invaders. Figure (e) shows the results obtained using different code size on Lunar Lander. Figure (f) shows the results obtained
retraining the system on a new goal in the Lunar Lander environment. The plots report on the y-axis the average mean reward
(solid line) and standard deviation (shaded area) of the different training sessions.

as

e2 = e1, t2s = t1s, v2
s = RandomInitialization() (19)

and re-train the models running Algorithm 1 (by relying
on everything as before, but the model initialization) in the
MDP 2 = (S,A, t, fe1,G2

, γ). This second training adjusts
the models e2, d2 and t2s and learns a new value function v2

s
from zero, that is specific for the new goal.

Experiments show that model-free RL algorithms are able
to converge to the new goal using the reward fe1,G2

that is
based on the encoder learned by our algorithm for the old
goal G1. Furthermore, if we use our algorithm instead, the
convergence is faster, since the planner can re-use also the
transition model learned for the old task.

Experiments
We evaluated our approach on different continuous-state
problems of the OpenAI Gym suite. The problems faced
range from under-actuated robot control problems such as
CartPole and Acrobot, continuous problems subject to scat-
tered rewards such as Lunar Lander and Atari games such
as Space Invaders. In the selected environments we compare
our model-based algorithm with model-free algorithms: (1)
a Vanilla Double Deep Q-Network (DDQN), (2) a DDQN
algorithm that uses our symbolic Q-model based on proposi-
tional symbolic representation as Q-network, called in plots
as ‘Encoded DDQN’ (3) a DDQN algorithm that uses our

symbolic Q-model and learn also the transition-model on the
symbolic space without using it for planning, that is labeled
in plots as ‘Encoded DDQN with transition network’.

We remark that the symbolic representation learned by
the encoded DDQN is different by the one learned by the
encoded DDQN with the transition network, since also the
learning of the transition network influences the representa-
tion learning.

Setup
All the experiments have been conducted on an Intel i7 pro-
cessor and an Nvidia 1060 GPU. The chosen setting for the
DDQN is lr = 0.001, γ = 0.99, the number of hidden lay-
ers is 4, and the number of units for each hidden layer is 256.
When not differently indicated, the number of symbols used
to represent the state is 200. The experiments have been con-
ducted ten times for each environment and approach. Fig-
ure 4 show mean values (solid line) and standard deviation
(shaded area) of the results obtained.

Training performance
In this section we compare the planning system’s perfor-
mance with those of proven Deep Reinforcement Learning
approaches, to demonstrate the persistence of sample effi-
ciency nevertheless the use of the symbolic code. The results
obtained by the system on the test environments demon-
strate its ability to solve different types of continuous and



dynamic environments as: Control problems of underactu-
ated systems (CartPole and AcroBot); continuous and dy-
namic control problems with sparse reward (Lunar Lander);
and problems with adversaries (Space Invaders).

CartPole and Acrobot We address the problem of con-
trolling under-actuated systems, like the Cartpole and Ac-
robot Gym environments, using our online symbolic plan-
ner. The CartPole environment requires the agent to balance
a pole connected to a motorized car. The goal is to keep
the pole at an angle between +15° and -15° using the cart’s
movement. The state definition of the environment is: [p,
ṗ, θ, θ̇], where p is the cart position and θ is the pole an-
gle with respect to the cart. In the Acrobot environment, the
agent can act only on the intermediate joint of a two revolute
joints planar arms. The two links are initially hanging down-
wards, the goal is to reach a certain height with the end of the
second link. The state definition of the Acrobot is so com-
posed: [cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2], where θ1

is the first joint angle and θ2 is the second one. In both en-
vironments a code consisting of 200 propositional symbols
have been used. Figures 4(a) and 4(c) show the results of
our algorithm applied to the CartPole and Acrobot environ-
ments respectively. Our model-based algorithm reaches the
desired average reward in a number of episodes compara-
ble to the model-free methods DDQN and encoded DDQN,
despite it has to learn much more information in order to
plan appropriately, since the planner is composed by four
neural networks, while the other model-free algorithms need
to learn only the Q-network. In the Acrobot experiment we
can notice a quick improvement of the mean reward around
the 100-th episode, that is probably when the planner has
reached enough information to start to properly plan the
agent actions.

Space Invaders The last environment proposed is an Atari
Game: Space Invaders. The game RAM representation has
been taken as input state. The state is therefore composed
of 128 variables representing not intelligible task features.
Figure 4(d) presents the comparison between our approach,
Vanilla DDQN, and DDQN with encoded states. In this case,
systems showed similar behavior, both in the number of
episodes necessary to reach the average reward and the over-
all reward function’s overall performance.

Code abstraction and generalization
We have evaluated how the system performance vary setting
different sizes of the symbolic code in the Lunar Lander en-
vironment.

Figure 4(e) shows the obtained results. Results show
clearly that properly setting the symbol-set size is critical,
since insufficiently large symbol-sets prevent the system to
converge. In the case of Lunar Lander, convergence to the
desired final reward of 100 is achieved only with code sizes
grater or equal to 100. Furthermore, there is a relation be-
tween the number of used symbols and the training sample
efficiency, as shown in the increasing performance between
the use of 100, 200, and 400 symbols.

We also have conducted experiments in using the plan-
ning domain acquired in one MDP to perform a different

task in the same environment. We take as reference envi-
ronment Lunar Lander. First we have trained a planning do-
main over 200 symbols reaching the original goal expressed
by the reward, namely safely landing the spacecraft in the
center of the ground. Then we have re-trained the planning
models with the reward based on the encoder previously
trained, expressed by Equation 17, whit the new goal equal
to (0,1,0,0,0,0,0,0); hence, we want the spacecraft to stay
straight in the center of the screen with zero angular and lin-
ear velocity. Figure 4(f) shows the comparative results of the
planner and a Vanilla DDQN trained on the new reward. The
use of the already trained encoding speeds up the learning of
our system compared to a Vanilla DDQN. This demonstrates
that the system creates encodings sufficiently generic to al-
low the execution of multiple tasks in the same environment.

Conclusions
In conclusion, this paper proposes an interactive learning
algorithm inspired by both planning and Reinforcement
Learning, for automatically learning a symbolic planning
domain from a continuous-state MDP. The data gained by
experience in the MDP are used to train online four neural
network models, enet, dnet, tnet∆ andQnet. These models al-
low for fast symbolic online planning over a finite horizon
at each interaction step. The planner can reason only with
the automatically grounded symbolic representation, with-
out the need for complex trajectory propagation and evalu-
ation in the original continuous state space. We have shown
that reasoning in the symbolic space is enough to effectively
guide the agent’s action in the original continuous environ-
ment to achieve the task expressed by the MDP reward func-
tion. We started analyzing the use of the learned symbolic
domain as a complete domain, namely a domain that can
be used to plan a sequence of actions for any possible cou-
ple initial state-final state in the original state space. We
have shown that the planning domain can be retrained so
to achieve different goals in the same environment through
a reward shaping based on the found symbolic representa-
tion. As a future direction, we aim at focusing on the domain
re-usability trying to speed-up or even eliminate the second
training necessary for achieving a new goal. In this regard,
we remark that learning an uncertainty model for the transi-
tions would be high beneficial, especially if we want to use
the symbolic model offline and to plan towards goal states
that have been little explored during training.
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