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Abstract
AI planning and reinforcement learning (RL) both solve
sequential decision-making problems, taking fundamentally
different approaches. In this work, we aim to bring AI plan-
ning and RL closer by investigating the relationship between
abstractions in AI planning and the options framework in RL.
To this end, we propose annotating RL tasks with AI planning
models, allowing us to define options based purely on the
planning model. Our experimental investigation shows that
these options can be quickly trained offline and can improve
the sample efficiency of a reinforcement learning algorithm.

Introduction
While both AI planning and reinforcement learning (RL)
solve sequential decision-making problems, the approach
they take is quite different. AI planning finds goal directed
paths in large scale state transition systems, concisely sym-
bolically represented using a logic-base language, such as
PDDL (McDermott 2000), and is able to quickly solve large
tasks. Deep reinforcement learning (RL) approaches directly
collect samples from a target environment and do not re-
quire predefined symbolic models for solving problem tasks,
except for the assumption that the underlying model is a
Markov decision process (MDP). However, such model-free
RL approaches are notoriously known for their sample inef-
ficiency, especially for large state or action space or sparse
reward tasks. This limits a lot of the real-world applications
(Dulac-Arnold, Mankowitz, and Hester 2019).

The differences in AI planning and RL might make it
seem like they are at odds with each other. However, there
are several similarities and complementary pieces that can
be exploited to address the shortcomings of the other’s ap-
proach. In fact, this observation is not new and several pa-
pers study the close relationship between the two fields (e.g.,
(Ryan 2002; Grounds and Kudenko 2007; Leonetti, Ioc-
chi, and Stone 2016; Eysenbach, Salakhutdinov, and Levine
2019)). In this paper, we aim to improve the sample effi-
ciency of RL by using parallels between the hierarchical re-
inforcement learning formalism and abstractions in AI plan-
ning.

Hierarchical reinforcement learning (Barto and Mahade-
van 2003) aims to address the curse of dimensionality by

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

exploiting the task structure in the state and action space.
Earlier works introduced manually designed task decompo-
sition (Dietterich 2000) but recent works have moved toward
learning or automatically discovering such structure. The
options framework (Sutton, Precup, and Singh 1999) is often
used as a basis for this structure. These options define tem-
poral abstractions that induce a semi-Markov decision pro-
cess (SMDP) over the underlying MDP. From this, several
works have proposed to discover options (Machado, Belle-
mare, and Bowling 2017; Bacon, Harb, and Precup 2017).
In contrast to fully specified decompositions, (Bacon, Harb,
and Precup 2017) proposes an end-to-end learning of the
structure. In between these extremes, we propose a middle
ground by using planning abstractions and symbolic anno-
tation as a way to define options. In this setting, our work
is closest to the work of taskable RL (Illanes et al. 2020)
and we differ in the symbolic annotation requirements. A
key insight is that options, which are usually thought of as
temporal abstractions, have a general formalism that allows
the use of state abstractions which are well-studied in the AI
planning literature (Edelkamp 2001; Hoffmann, Sabharwal,
and Domshlak 2006; Helmert et al. 2014; Katz and Domsh-
lak 2010; Torralba and Sievers 2019).

In this paper, we present an integrated framework for
planning and RL by linking the state abstraction in plan-
ning and temporal abstraction in RL. We first formalize the
framework and investigate the options discovered by state
abstraction based on projection. Then, we demonstrate that
an RL algorithm that learns option level policy functions in
SMDP setting combined with proximal policy optimization
algorithm (PPO) (Schulman et al. 2017) and show the im-
provements in the sample efficiency in the room navigation
domain and logistics domain in AI planning.

Background
RL and Options Framework
In reinforcement learning, an agent interacts with an
environment which we formulate as an MDP M =
〈S,A, P, r, γ〉 with a set of states S, a set of actions A, a
state transition function P : S × A × S → [0, 1], a reward
function r : S ×A → R, and a discounting factor γ ∈ (0, 1]
for the rewards. The most common objective is to learn a
stationary optimal policy π∗ that maximizes the expected



return,

π∗ = argmax
π

Eπ
[ ∞∑
t=0

γtrt|s0 = s
]
, (1)

where s0 is the initial state, and π(a|s) is a probability distri-
bution π : S×A → [0, 1]. Given a policy π, a value function
V π(s) is the expected sum of discounted reward from each
state s ∈ S,

V π(s)=
∑
a∈A

π(a|s)
[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)
]
. (2)

The value of executing an action a ∈ A in state s ∈ S under
the policy π is important in learning algorithms and we call
it an action-value function,

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)Qπ(s′). (3)

The optimal value function V ∗(s) and action-value function
Q∗(s, a) can be found by maximizing V π(s) and Qπ(s, a),

V ∗(s) = max
π

V π(s) (4)

Q∗(s, a) = max
π

Qπ(s, a). (5)

A set of options O formalizes the temporally extended
actions that defines a semi-MDP (SMDP) over the orig-
inal MDP M. A Markovian option O ∈ O is a triple
〈IO, πO, βO〉, where IO is the initiation set IO ⊆ S that
defines the states in which O can begin, πO is a stationary
intra-option policy that provides mapping from a state to an
action πO : S × A → [0, 1], and βO is a termination func-
tion βO : S → [0, 1] that defines the probability of termi-
nating the O in state s. We follow the call-and-return option
execution model, where an agent selects an option O using
an option level policy µ(O|s) in state s at the time t, and
generates a sequence of actions according to the intra-policy
πo(a|s). The execution of the option O continues up to k
time steps and terminated by βO and returns option reward
accumulated from time t + 1 to t + k with a discounting
factor γ,

R(s,O) = E
[ t+k∑
t′=t+1

γt
′−t−1rt′ |E(O, s, t)

]
, (6)

where E(O, s, t) denotes the event of an option O being se-
lected in state s at time t, and rt′ denotes the reward obtained
at time t′. The state transition under the options can be writ-
ten as

P (s′|s, o) =
∞∑
j=0

γjPr
(
k = j, st+j |E(O, s, t)

)
, (7)

where the probability is a combination of an option O that
started at time t terminates in j steps (Sutton, Precup, and
Singh 1999).

In SMDP theory, the value function V µ(s) under the op-
tion level policy µ and the option-value function Qµ(s,O)
can be derived in a functional form similar to Eq. (2) and
Eq. (3). Namely,

V µ(s)=
∑
O∈O

µ(O|s)
[
R(s,O)+

∑
s′∈S

P (s′|s,O)V µ(s′)
]
, (8)

and the option-value function Qµ(s,O),

Qµ(s,O)=R(s,O)+
∑
s′∈S

P (s′|s,O)
∑
O∈O

µ(O|s)Qµ(s′, O). (9)

Given a set of learned options O, off-policy learning
methods such as Q-learning (Watkins and Dayan 1992)
and Deep Q-learning (Mnih et al. 2013) can learn the op-
tion value function Eq. (9) by SMDP Q-learning or intra-
option Q-learning (Sutton, Precup, and Singh 1999). On the
other hand, policy optimization methods such as actor-critic
(Konda and Tsitsiklis 2000) and proximal policy optimiza-
tion algorithm (Schulman et al. 2017) can directly optimize
the expected return in Eq. (8) to obtain the option level pol-
icy µ by extending the set of learned options O with primi-
tive actions A.

Planning

In this work we follow the notation of (Bäckström and Nebel
1995), omitting the initial state from the task definition.
SAS+ planning task Π is given by a tuple 〈V,O, s∗〉, where
V is a set of state variables and O is a finite set of opera-
tors. Each state variable v ∈ V has a finite domain dom(v)
of values. A pair 〈v, ϑ〉 with v ∈ V and ϑ ∈ dom(v) is
called a fact. A (partial) assignment to V is called a (par-
tial) state, with the partial state s∗ being the goal. We de-
note the variables of a partial assignment p by V(p). It is
convenient to view a partial state p as a set of facts with
〈v, ϑ〉 ∈ p if and only if p[v] = ϑ. Partial state p is consistent
with state s if p ⊆ s. We denote the set of states of a plan-
ning task by S ′. Each operator O is a pair 〈pre(o), eff (o)〉
of partial states called preconditions and effects. The (pos-
sibly empty) subset of operator precondition that does not
involve variables from the effect is called prevail condition,
prv(o) = {〈v, ϑ〉 | 〈v, ϑ〉 ∈ pre(o), v 6∈ V(eff (o))}. An
operator cost is a mapping C : O → R0+. An operator o is
applicable in a state s ∈ S ′ if and only if pre(o) is consis-
tent with s. Applying o changes the value of v to eff (o)[v],
if defined. The resulting state is denoted by sJoK. An oper-
ator sequence π = 〈o1, . . . , ok〉 is applicable in s if there
exist states s0, · · · , sk such that (i) s0 = s, and (ii) for each
1 ≤ i ≤ k, oi is applicable in si−1 and si = si−1JoiK. We
denote the state sk by sJπK. π is a plan for s iff π is applica-
ble in s and s∗ is consistent with sJπK.

A transition graph of the planning task Π = 〈V,O, s∗〉
is a tuple T = 〈S, T, S∗〉, where S is the set of states of
Π, T ⊆ S × O × S is a set of (labelled) transitions, and
S∗ ⊆ S is the set of goal states. An abstraction of the tran-
sition graph T is a pair 〈T ′, α〉, where T ′ = 〈S ′, T ′, S′∗〉
is an abstract transition graph and α : S 7→ S ′ is an ab-
straction mapping, such that 〈α(s), o, α(s′)〉 ∈ T ′ for all
〈s, o, s′〉 ∈ T , and α(s) ∈ S ′∗ for all s ∈ S∗. If T ′ does
not contain any additional transitions or goal states (iff in
the above definition), it is called a homomorphism. A homo-
morphism defined by a mapping α such that α(s) = α(s′)
iff s[v] = s′[v] for all variables v ∈ V ′ is called a projection
onto variables V ′ ⊆ V .



Annotating RL with Planning
A planning annotated reinforcement learning (PaRL) task is
defined by a triplet E = 〈M,Π, L〉, where M is an MDP
over states S, Π is a planning task over states S ′, and L :
S 7→ S ′ is a mapping from the states of the MDP to planning
states. The objective of the PaRL task is to find an optimal
policy for the MDP M . Therefore, the planning task and the
mapping L can be viewed as an additional information, not
essential for solving the task.

Note that additional PaRL tasks can be obtained from
E = 〈M,Π, L〉 by abstracting the planning task. Given
an abstraction mapping α of the planning task Π, let Πα

be a planning task with the transition system being the ab-
straction under α of the transition system of Π, and Lα =
α ◦ L be the function composition of α and L. Then E′ =
〈M,Πα, Lα〉 is also a PaRL task, annotating the same MDP
with a different planning task. While in general it is not clear
how to create a concisely represented planning task Πα for
any abstraction mapping α, many existing abstraction meth-
ods allow for such concise representation to be automati-
cally obtained (Edelkamp 2001; Hoffmann, Sabharwal, and
Domshlak 2006; Katz and Domshlak 2010; Torralba and
Sievers 2019). While the benefit of further abstracting the
planning task might not be obvious, it will be explained in
what follows.

One question worth asking is - where do the planning
tasks that annotate the existing MDPs come from? In this
work we assume that the planning tasks, as well as the state
mappings are provided together with the MDP. Obtaining
the planning task and the mapping is outside the scope of
our paper and is investigated under the umbrella of work on
learning the planning tasks, e.g., (Aineto, Jiménez, and On-
aindia 2018).

Planning, Abstractions, Options and RL
The generic definition of planning annotated reinforcement
learning tasks is a mixed blessing. On the one hand, it does
not pose any constraints on the connection between the RL
task and the planning task beyond the existence of the map-
ping L. On the other hand, if the two tasks are unrelated, it
is not clear what is the benefit of connecting these tasks to-
gether. We formulate the connection between the two tasks
by extending the definition of abstraction to PaRL tasks.

Definition 1 Let E = 〈M,Π, L〉 be a PaRL task and T =
〈S ′, T, S∗〉 be the transition graph of Π. We say that 〈Π, L〉
is an abstraction ofM = 〈S,A, P, r, γ〉 if for all 〈s, a, s′〉
we have P (s′|s, a) > 0, iff 〈L(s), o, L(s′)〉 ∈ T for some
o ∈ O or L(s) = L(s′). We call such PaRL tasks properly
planning annotated reinforcement learning (PPaRL) tasks.

There are two major differences from the original defini-
tion of transition graph abstractions. First, P is not neces-
sarily deterministic. Second, the definition does not require
mapping goal states (not defined for MDPs) to goal states.
However, the definition does allow us to reflect the abstrac-
tion of the transition graph structure.

For a PPaRL task E = 〈M,Π, L〉, each operator o
of Π defines a sub-MDP Mo by requiring a non-zero

transition probability to be only on 〈s, a, s′〉 where either
〈L(s), o, L(s′)〉 ∈ T or L(s) = L(s′).

RL Options Definition
Given a PaRL task E = 〈M,Π, L〉, we define the set of
options O for M as follow. For each planning task opera-
tor o, we define an option Oo by specifying analytically its
initiation set and its termination function.

IOo
= {s ∈ S | pre(o) ⊆ L(s)}

In words, a state s ∈ S of M is in the initiation set of the
optionOo if the operator o is applicable in the corresponding
planning state L(s).

βOo
(s) =

{
1 (prv(o) ∪ eff (o)) ⊆ L(s),

0 otherwise.

In words, the termination function of the option Oo maps a
state s ∈ S of M to 1 if the operator o can result in the
corresponding abstract state L(s). Otherwise, it maps s to 0.

Additionally, for a goal s∗ and an operator o, if the opera-
tor can achieve the goal (that is, it can be the last operator of
a plan), we can define an option Os∗o by specifying analyti-
cally its initiation set.

IOs∗
o

= {s ∈ S | pre(o) ∪ (s∗ \ eff (o)) ⊆ L(s)}

In words, a state s ∈ S of M is in the initiation set of the
option Os∗o if the operator o is applicable in the correspond-
ing abstract state L(s) and applying the operator o in L(s)
would result in an abstract goal state. The termination func-
tion βOs∗

o
(s) = 1 for all goal states inM, s ∈ S∗ and 0 for

all other states. To complete the option definition, we need
the option policy πO that moves the agent from any state in
the initiation set towards a state in the termination set. This
is essentially solving a (small) portion of the full MDP. We
detail this in the next subsection.

As the number of options is proportional to the number
of operators in Π, it can sometimes be beneficial to abstract
the planning task in a way that reduces the number of oper-
ators. One possible way to do so is label reduction (Sievers,
Wehrle, and Helmert 2014).

Previous attempts in the literature have suggested using
planning operators to define options (Illanes et al. 2020).
However, they assume an additional domain specific func-
tion α is provided, associating planning operators with con-
ditions over propositional variables. Here, we do not require
such an additional input, relying solely on the planning task.
Further, while previous work defined the termination func-
tion only based on the provided function α, having the ini-
tiation set consisting of all states, here we define both the
initiation set and termination function based on operators
preconditions and effects, respectively.

Solving PaRL
Given a PaRL task E = 〈M,Π, L〉 and any pair of initial
state s0 ∈ S and a goal sg ∈ S∗ inM, we can generate a
sequence of options {Oo1 , Oo2 , . . . , Ook} from a plan in Π
that reaches the goal state L(sg) ∈ S ′ from the initial state
L(s0) ∈ S ′. Therefore, AI planners can be invoked in two



ways, either precompute those option-level plans offline or
generate plans while training RL agents online. At the same
time, RL agents also have the freedom to train both option
level policy µ and intra-option policies πO for all O ∈ O
using either off-policy or on-policy learning algorithms.

On the one hand, we can view an intra-option Q-learning
algorithm proposed in taskable RL (Illanes et al. 2020) as
an online planning off-policy learning algorithm, where the
sequence of options generated directly from a planner while
updating πO. As another example, algorithms based on the
option critic architecture (Bacon, Harb, and Precup 2017;
Harb et al. 2018; Riemer, Liu, and Tesauro 2018) can be
viewed as another online planning off-policy learning ap-
proach, where the plans over the options are sampled from
option level policy µ. We can design generic online planning
strategies for training RL agents by integrating AI planning
algorithms inside the rollout process in either on-policy or
off-policy learning algorithms.

On the other hand, we see that option discovery algo-
rithms relying on capturing the properties inherent in the
state space often separate the option discovery, intra-policy
learning, and option-level policy learning phase (Stolle
and Precup 2002; Kazemitabar and Beigy 2008; Machado,
Bellemare, and Bowling 2017; Ramesh, Tomar, and Ravin-
dran 2019). In such cases, we can generate option level plans
offline to help the learning process for identifying relevant
options for solving a particular problem instance or learning
option-level policy similar to skill-chaining (Konidaris and
Barto 2009). In addition, PaRL could possibly improve the
data generation process of offline RL.

Offline Planning with SMDP Learning
Among many possible combinations, we demonstrate our
PaRL framework with an offline option planning with
SMDP learning that uses PPO for policy updates. Proxi-
mal Policy Optimization (PPO) (Schulman et al. 2017) is a
policy gradient method for online learning, and it uses first-
order optimization and clipped probability ratio to efficiently
update policies from the data. This was chosen for its reli-
able performance in many RL tasks.

Algorithm 1 outlines the overall procedure for training op-
tion level policy µ and subset of intra-options O relevant to
a given PaRL task E〈M,Π, L〉.

SMDP learning with PPO begins by selecting the sub-
set of relevant options by generating a plan in the annotated
planning task Π given an initial state s0 and a goal state sg in
M (line 1). The subset of options Oop can be derived from
each operator in op following the RL options definition in
the previous section (line 2). After identifying a subset of
options to train, we use PPO agent to train each πOoi

sub-
ject to its initiation set IOoi

, and βOoi
using the sub-MDP

MOoi
(line 3-4). The last stage is training µ over the SMDP

defined on the originalM with additional options Oop fol-
lowing Eq. (8), where the SMDP extends its set of actions
from the primitive actions A with Oop (line 5-6).

In the experiment, we ran PPO implemented in Stable
baselines3 (Raffin et al. 2019) with the following hyper pa-
rameters: the maximum episode length was set to 1024, the
discounting factor γ was 0.99, the batch size was 64, the

Algorithm 1 SMDP Learning with PPO

Require: PaRL E〈M,Π, L〉, the initial state s0 ∈ S and
goal state sg ∈ S∗ inM

Ensure: option level policy µ, trained options O
Offline Planning for Option Selection

1: op← generate a plan in Π from L(s0) to L(sg)
2: Oop ← {Ooi ∈ O|oi ∈ op}

Intra-policy Learning
3: for each option Ooi ∈ Oop do
4: πOoi

← PPO(MOoi
) . train πOoi

s.t. IOoi
, βOoi

Option-level SMDP Learning
5: Ã← A∪Oop

6: µ← PPO(M′〈S, Ã, P, r, γ〉)

number of gradient updates per single rollout was 10, the
λ for generalized advantage estimation was 0.95, the clip
range was 0.2, the coefficient for both the entropy and value
loss was 0.5, and the learning rate was 0.0003.

Experimental Evaluation
We implemented our framework on top of PDDLGym (Sil-
ver and Chitnis 2020), Stable baselines3 (Raffin et al. 2019),
and option-critic baselines (Zhang 2018). In order to empir-
ically evaluate our proposed approach, we obtain a PPaRL
task E = 〈M,Π, L〉 as follows. We start with a planning
task ΠM as an RL problem and obtain an equivalent MDP
M by using PDDLGym. Then, we perform a variable pro-
jection mapping (Helmert, Haslum, and Hoffmann 2007)
onto the goal variables of ΠM and obtain a planning task
Π and a mapping α from the states of ΠM to the states of
Π. Together with the mapping LM from the states of M
to the states of ΠM provided by PDDLGym, this allows us
to define L = α ◦ LM . We evaluated MDP tasks that are
obtained from the 4-rooms domain (Sutton, Precup, and
Singh 1999) and the blocksworld and logistics do-
mains in classical planning. We compare the following three
configurations for training RL agents and report the average
rewards and the average lengths of the plans during train-
ing. The baseline configuration, flat-rl, learns the policy
function from the flat MDP with Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017), and the next configura-
tion, smdp, implements Algorithm 1. Lastly, we also eval-
uated the option-critic algorithm, (Bacon, Harb, and
Precup 2017) for training both option level policy function
and a set of intra-policy functions as a baseline for compar-
ing the performance.

Rooms Domain
The rooms domain modifies the classical 4-rooms domain
by increasing the number of rooms in the varying size of the
grids. In this problem, an agent moves on a grid, separated
into N rooms, with narrow corridors connecting the adjacent
rooms. The agent needs to move from a given location on the
grid (in a given room) to a goal location (in a goal room).

In order to use the domain within our framework, we have
created a PDDL version of the N rooms domain and defined



(a) 4 rooms - s0 fixed (b) 4 rooms - s0 random (c) 8 rooms - s0 fixed (d) 8 rooms - s0 random

(e) 2 pkgs - s0 fixed (f) 2 pkgs - s0 random (g) 3 pkgs - s0 fixed (h) 3 pkgs - s0 random

(i) 4 blocks - s0 fixed (j) 4 blocks - s0 random (k) 4 blocks - s0 fixed (l) 4 blocks - s0 random

Figure 1: Learning curves showing the rewards over the 106 samples. The first row presents the results from the rooms
domain, the second row presents the results from the logistics domain, and the third row presents the results from the
blocksworld domain. Each plot shows 10 independent runs and the aggregated results with the 95% confidence interval.
The blue lines are the configuration flat-rl, The orange lines are the configuration smdp without using the goal options
IOs∗

o
, and the green lines are the configuration smdp using the goal options.

a mapping LM from the feature vectors inM encoding the
coordinate on the grid to the boolean vectors of the ground
propositions in ΠM . (Both the domain file and the problem
files can be found in Appendix A.1.) It is commonly under-
stood that the options framework will improve the sample ef-
ficiency of the entire learning process if each individual op-
tion captures a meaningful subproblem such that the meta-
learner using options can easily connect options to solve the
complicated RL tasks. Such a subtask should capture the
movement between rooms in the rooms domain.

Example 1 In the 8 rooms domain on the 20×20 grid, the
PPaRL task captures total 40 options that define all the
movements from one room to its adjacent corridor. For a

concrete example, we see an option O that’s defining a
movement from the room r5 to the corridor connecting to
the room r3.

IO = {s ∈ S|in-room(r5:room) ⊆ L(s)}
βO = {s ∈ S|in-room(c-r5-r3:room) ⊆ L(s)},

where we abused notation for a subset of S ′ that entails
the logical expression such as in-room(r5:room) with the ex-
pression itself.

Next, we present the learning curves from 3 configura-
tions on two problems instances, one from the 4 rooms on
10x10 girds and the other 8 rooms on 20x20 grids. In all
training phases, we gave reward 100 when reaching the goal,



(a) 4 rooms s0 fixed (b) 4 rooms - s0 random (c) 8 rooms - s0 fixed (d) 8 rooms - s0 random

(e) 2 pkgs - s0 fixed (f) 2 pkgs - s0 random (g) 3 pkgs - s0 fixed (h) 3 pkgs - s0 random

(i) 4 blocks - s0 fixed (j) 4 blocks - s0 random (k) 4 blocks - s0 fixed (l) 4 blocks - s0 random

Figure 2: Learning curves showing the average length of the plans over the 106 samples from the same runs in Figure 1.

and we deduct a cost of -0.001 for each step, and cost -0.1 for
applying inapplicable actions at each state. The discounting
factor γ was set to 0.99, and the maximum episode length
was limited to 1024. Since smdp uses pre-trained options
derived from the PPaRL task, we provided a set of options
that appear in the plan from the Π given the initial state and
the goal in each evaluated task. Namely, we extended the
action space with 3 options in the 4 rooms problem and 6
options in the 8 rooms problem. In addition to the options
derived from Π, smdp-goal extends its set of options with
the options derived from the goal state IOs∗

o
, which adds ad-

ditional 2 more options for both problems.
In Figure (1a) and (1b), we can see that the learn-

ing curves from smdp (orange) and smdp-goal (green)
reaches higher reward much earlier than flat-rl (blue).
On the other hand, flat-rl achieves the highest reward in
longer run, which is consistent to the SMDP learning theory
(Sutton, Precup, and Singh 1999). We also see that smdp

and smdp-goal converge much faster when we fixed the
initial state (Figure (1a)) as defined in PDDL problem in-
stance since we provided a set of options that covers the op-
erators in a plan in Π from the fixed initial state. Figure (1c)
and (1d) are obtained from 8 rooms problem instances and
we observe the similar trend.

Figure (2) shows the decrease in the average length of the
plan during training. From Figure (2a) to figure (2d), we can
see that the smdp and smdp-goal configurations reached
to the shorter length plans much earlier than flat-rl
when they used an option as a macro action. Therefore, we
can conclude that the options framework derived from the
PPaRL task offers the options with the desired subtasks and
improves the sample efficiency.

PDDL based domains
Our experiments include the two most famous PDDL based
domains, logistics and blocksworld (4ops version).



(a) 8 rooms - flat-rl (b) 8 rooms - option-critic (c) 8 rooms - smdp (d) 8 rooms - option

(e) 3 pkgs - flat-rl (f) 3 pkgs - option-critic (g) 3 pkgs - smdp (h) 3 pkgs - option

(i) 4 blocks - flat-rl (j) 4 blocks - option-critic (k) 4 blocks - smdp (l) 4 blocks - option

Figure 3: Learning curves showing the average rewards over the 106 samples from flat-rl, option-critic, smdp, and
the offline option training using flat-rl from the left to the right on the 8-rooms, logistics, and blocksworld
domains.

The main reason that these two domains were chosen is the
different result on the PPaRL task after applying the projec-
tion on the goal variables. In logistics domain, Π gener-
ates options that correspond to the temporally extended ac-
tions for individual packages. However, the blocksworld
does not reduce the number of action operators from ΠM to
Π. Since our framework is based on PDDLGym, our states
are represented by boolean vectors of the size equivalent
to the number of ground propositions. The shortcoming of
such a representation is that the Deep RL algorithms do not
scale well since the number of ground propositions tends
to grow quickly. In addition, the number of ground actions
also grows quickly compared with typical RL environments.
Due to the limitations mentioned above, we experiment with
small size problems. The PDDL instances can be found in

Appendices A.2 and A.3.

Logistics Domains In logistics domain, we compare
the configurations on domains having 2 cities with 2 pack-
ages and 3 cities with 3 packages. We first examine typical
options derived from the PPaRL task.

Example 2 In logistics domain, the objective is to move
packages from the initial location to the goal location by
driving a truck that connects a city to the airport in the city
or by flying from one airport to the other using an airplane.
We can see options that define loading or unloading actions
for a package. The following option corresponds to an oper-
ator loading the package obj11 to the airplane apn1 at the



airport apt1,

IO = {s ∈ S|at(obj11:package,apt1:airport) ⊆ L(s)}
βO = {s ∈ S|in(obj11:package,apn1:airplane) ⊆ L(s)}.

The learning curves from Figure (1e) to Figure (1h) present
the average rewards from the evaluated configurations. Dur-
ing training, we gave reward 1000 when reaching the goal,
and other parameters remained the same as the rooms do-
main. Figure (1g) and (1h) are obtained from an instance
with 3 cities and 3 packages, and we see that both flat-rl
and smdp do not reach the goal during training most of the
trials (the reward remains negative). Yet, smdp reached to
the goal with very long plans as shown in Figure (1g) when
others completely failed. From Figure (1e) and (1f), we see
that flat-rl and smdp were often successful to train pol-
icy functions reaching the goal, but we don’t see clear advan-
tage of using options. In logistics domain with 2 packages
and 3 packages, the number of primitive actions in PDDL-
Gym environment is 42 and 72, which may challenge PPO
algorithm. Although individual options may define tempo-
rally extended actions for each package that might help de-
composing the overall task, the high branching factor of the
actions will likely to lead the rollout process to irrelevant
state space.

Blocksworld Domains In blocks domain, we tested our
algorithms on two problem instances with 4 blocks. Since
the PPaRL task only abstracts away state variables for the
grounded predicates from (clear ?x - block), the options do
not extract useful subtasks. For example, the option O de-
rived from (pick-up a) defines

IO = {s ∈ S|ontable(a:block) ⊆ L(s)},
βO = {s ∈ S|holding(a:block) ⊆ L(s)}.

This option supposed to encapsulate primitive actions that
need to remove all the blocks on the block a and putting
down any block at hand. Even if we were successful at
learning those options, we expect that chaining those op-
tions won’t help solving the original problem. Furthermore,
the intra-option policy training for individual goal options
IOs∗

o
was no easier than solving the original problem in con-

trast with logistics domain. The learning curves from
Figure (1i) to Figure (1l) present the average rewards from
flat-rl and smdp, where we provided the same rewards
and hyper parameters used in the rooms domain. For the av-
erage length of the plan as shown in Figure (2i) to Figure
(2l), we observe a similar trend in the logistics domain.
Overall, we see that smdp converges slower than flat-rl.

Comparing All In Figure (3), we present the learning
curves from the flat-rl, and option-critic, smdp,
and the intra-policy learning. Each row from the top to the
bottom shows the learning curves from the 8 rooms domain,
logistics domain, and the blocksworld domain, respectively.
We first see that the option training converges fastest as de-
sired. Note that the option-critic is the worst com-
pared with other two PPO based methods flat-rl and
smdp, which is consistent to the reporting in (Zhang and
Whiteson 2019).

Challenges
The current implementation based on PDDLGym poses sev-
eral challenges, to be tackled in future work. First, the states
ofM are represented as boolean vectors, corresponding the
truth assignments to the planning task ground propositions,
obtained by a naive grounding of all lifted predicates, in-
cluding static predicates. Thus, each state consists of a large
portion of information that does not change from one state
to another. Second, the action space in PDDLGym consists
of all planning ground operators, regardless of their appli-
cability in a state. Thus, randomly choosing an action often
results in inapplicable actions. Third, the number of options
obtained from the planning operators, even after filtering, is
still quite large for the existing RL algorithms. Fourth, the
smdp algorithm treats all options and actions equally, not
giving preferences to options over atomic actions.

Related Work
Some of the relevant works that attempt to combine sym-
bolic planning and RL include PEORL (Yang et al. 2018),
SDRL (Lyu et al. 2019), and Taskable RL (Illanes et al.
2020). Our approach is similar to Taskable RL, but we do not
require any explicit definition of options from the manually
designed tasks. PEORL also considers integrating symbolic
planning and hierarchical RL, however, it assumes that an
exact representation of a MDP is available in the planning
task and an option per transition is directly mapped from
planning task transition system, which could be unrealistic.
It updates value function and associated option policies only
when options terminate, while our method can operate on-
line to accommodate intra-option update. Moreover, PEORL
is based on tabular representation, while our method is based
on deep neural network representation. Although, SDRL is
the deep learning extension of PEORL, it applies R-learning,
whereas our method can use any RL algorithm.

Conclusions and Future Work
In this work, we have presented a simple general framework
for annotating reinforcement learning tasks with planning
tasks, to facilitate the transfer of planning based techniques
into the field of reinforcement learning. We have shown how
to define options based on planning operator description, and
how to filter options based on a plan. Our preliminary exper-
iments show the feasibility of our approach.

This, however, is not the end of the road. While our
framework is generic, our initial implementation is based
on PDDLGym. Our very next step is therefore to remove
this dependency, allowing us to attempt to solve existing
environments where a partial PDDL model exists, such as
TextWorld (Côté et al. 2019) or Montezuma’s Revenge (Qiu,
Yao, and Wange 2018). Further, while this work focused on
presenting our framework and definition of options, our ex-
ploitation of options was quite naive, using an existing RL
algorithm. One can envision a plethora of planning based
approaches that guide the RL agent. One such approach was
suggested by Illanes et al. (2020), other approaches may in-
clude a re-planning based approach (Yoon, Fern, and Givan
2007).
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A Appendix

A.1 N-rooms PDDL

The PDDL domain file used for the n-rooms problem is described in what follows.

(define (domain rooms)
(:requirements :strips :typing :negative-preconditions)

(:types
location - object
room - object

)
(:predicates

(at ?x - location)
(in-room ?r - room)
(IN ?x - location ?r - room)
(CONNECTED ?x - location ?y - location)
(CONNECTED-ROOMS ?r - room ?s - room)

)

(:action move-in-room
:parameters (?from - location ?to - location ?r - room)
:precondition (and

(IN ?from ?r)
(IN ?to ?r)
(CONNECTED ?from ?to)
(in-room ?r)
(at ?from)

)
:effect (and

(not (at ?from))
(at ?to)

)
)

(:action move-out-room
:parameters (?from - location ?to - location ?r - room ?s - room)
:precondition (and

(IN ?from ?r)
(IN ?to ?s)
(CONNECTED ?from ?to)
(CONNECTED-ROOMS ?r ?s)
(at ?from)
(in-room ?r)
(not (at ?to))
(not (in-room ?s))

)
:effect (and

(not (at ?from))
(at ?to)
(not (in-room ?r) )
(in-room ?s)

)
)

)

Next, we visualize the problem files. These problem files have a large number of static predicates that describe the room
layout, and are rather straightforward to derive. The layout is shown in Figure 4.
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Figure 4: Problem files layout for the four instances of the n-rooms domain.

A.2 Logistics PDDL instances
(define (problem logistics-c2-p2-0)
(:domain logistics)
(:objects
apn1 - airplane
apt1 apt2 - airport
pos2 pos1 - location
cit2 cit1 - city
tru2 tru1 - truck
obj21 obj11 - package)

(:init
(at apn1 apt2)
(at tru1 pos1)
(at obj11 pos1)
(at tru2 pos2)
(at obj21 pos2)
(IN-CITY pos1 cit1)
(IN-CITY apt1 cit1)
(IN-CITY pos2 cit2)
(IN-CITY apt2 cit2))

(:goal (and
(at obj11 pos2)
(at obj21 pos1)

))
)

(define (problem logistics-c2-p2-1)
(:domain logistics)
(:objects
apn1 - airplane
apt1 apt2 - airport
pos2 pos1 - location
cit2 cit1 - city
tru2 tru1 - truck
obj21 obj11 - package)

(:init
(at apn1 apt2)
(at tru1 pos1)
(at obj11 pos1)
(at tru2 pos2)



(at obj21 pos2)
(IN-CITY pos1 cit1)
(IN-CITY apt1 cit1)
(IN-CITY pos2 cit2)
(IN-CITY apt2 cit2))

(:goal (and
(at obj11 apt1)
(at obj21 pos1)

))
)

(define (problem logistics-c3-p3_test-0)
(:domain logistics)
(:objects

apn1 - airplane
apt3 apt2 apt1 - airport
pos3 pos2 pos1 - location
cit3 cit2 cit1 - city
tru3 tru2 tru1 - truck
obj31 obj21 obj11 - package)

(:init
(at apn1 apt1)
(at tru1 pos1)
(at obj11 pos1)
(at tru2 pos2)
(at obj21 pos2)
(at tru3 pos3)
(at obj31 pos3)
(IN-CITY pos1 cit1)
(IN-CITY apt1 cit1)
(IN-CITY pos2 cit2)
(IN-CITY apt2 cit2)
(IN-CITY pos3 cit3)
(IN-CITY apt3 cit3))

(:goal (and
(at obj11 apt1)
(at obj21 apt2)
(at obj31 apt3)

))
)

(define (problem logistics-c3-p3_test-1)
(:domain logistics)
(:objects

apn1 - airplane
apt3 apt2 apt1 - airport
pos3 pos2 pos1 - location
cit3 cit2 cit1 - city
tru3 tru2 tru1 - truck
obj31 obj21 obj11 - package)

(:init
(at apn1 apt1)
(at tru1 pos1)
(at obj11 pos1)
(at tru2 pos2)



(at obj21 pos2)
(at tru3 pos3)
(at obj31 pos3)
(IN-CITY pos1 cit1)
(IN-CITY apt1 cit1)
(IN-CITY pos2 cit2)
(IN-CITY apt2 cit2)
(IN-CITY pos3 cit3)
(IN-CITY apt3 cit3))

(:goal (and
(at obj11 apt2)
(at obj21 pos1)
(at obj31 apt3)

))
)

A.3 BlocksWorld PDDL instances
(define (problem BLOCKS-4-0)
(:domain BLOCKS)
(:objects D B A C - block)
(:INIT (CLEAR C) (CLEAR A) (CLEAR B) (CLEAR D) (ONTABLE C) (ONTABLE A)
(ONTABLE B) (ONTABLE D) (HANDEMPTY))

(:goal (AND (ON D C) (ON C B) (ON B A) (ONTABLE A)))
)

(define (problem BLOCKS-4-1)
(:domain BLOCKS)
(:objects A C D B - block)
(:INIT (CLEAR B) (ONTABLE D) (ON B C) (ON C A) (ON A D) (HANDEMPTY))
(:goal (AND (ON D C) (ON C A) (ON A B)))
)


