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1 Introduction
Reinforcement learning (RL) enables an agent to learn
from trial-and-error experiences toward achieving long-term
goals; automated planning aims to compute plans for accom-
plishing tasks using action knowledge. Despite their shared
goal of completing complex tasks, the development of RL
and automated planning has been largely isolated due to
their different computational modalities. Focusing on im-
proving RL agents’ learning efficiency, we develop Guided
Dyna-Q (GDQ) to enable RL agents to reason with action
knowledge to avoid exploring less-relevant states. The ac-
tion knowledge is used for generating artificial experiences
from an optimistic simulation.

Researchers have developed algorithms that consolidate
model-free RL and automated planning to avoid taking
unreasonable actions in exploration (Ferreira et al. 2017;
Efthymiadis and Kudenko 2013). The research on lever-
aging knowledge to improve RL agents’ learning perfor-
mance is introduced in the recent survey paper (Zhang and
Sridharan 2020). One of the methods DARLING, leverages
human knowledge to avoid risky or useless state visits in
RL, and has been applied to grid world domains and mo-
bile robot navigation (Leonetti, Iocchi, and Stone 2016).
Such a domain where humans can provide an explicit world
model includes potentially many similar tasks, rendering
goal-independent methods more suitable. Once the world
model is known, we can plan the optimal policy for tasks
without extra sampling. We develop Guided Dyna-Q (GDQ)
that helps the agent learn the world model while avoiding
exploring less-relevant states. We have evaluated GDQ with
2D navigation tasks in simulation. Its results show that GDQ
significantly improves the learning efficiency compared to
existing model-based and model-free RL methods, includ-
ing Q-Learning, Dyna-Q, and DARLING (Sutton and Barto
2018; Leonetti, Iocchi, and Stone 2016).1

2 Guided Dyna-Q Algorithm
The overview of the procedure of Guided Dyna-Q (GDQ)
is shown in Figure 1. In particular, we use Answer Set Pro-
gramming (ASP) to formulate action knowledge (Lifschitz

1The full paper of this abstract has been accepted for publica-
tion at ICAPS-2021 under the same title.

2002; Erdem, Gelfond, and Leone 2016), and use Dyna-Q
for model-based RL (Sutton and Barto 2018).

We use Π(SA,AA,M) to represent our automated plan-
ner, where SA and AA are the state and action sets re-
spectively. A task to the automated planner is defined as
M = (sA0 , s

A
G) where sA0 , s

A
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and goal states respectively. Given task M , an automated
planning system can use Π(SA,AA,M) to compute a set of
plans,H, where p ∈ H is in the form of a sequence of state-
action pairs, and each action sequence leads state transitions
from the initial state sA0 all the way to the goal state sAG.

p =
〈〈
sA0 , a

A
0

〉
,
〈
sA1 , a

A
1

〉
, · · · ,

〈
sAG

〉〉
(1)

The plans computed by the automated planner are referred
to as optimistic plans, because real-world domain uncer-
tainty is frequently overlooked in building the planners. For
instance, a robot taking the action of “navigate to room R”
sometimes does not result in the robot being in room R due
to the possibility of obstacles blocking the way. The goal of
optimistic initialization (OPTINIT) is to use the plans com-
puted by the automated planner to initialize Q-values, and
prevent the agent from exploring less-relevant states.

Given the initialized Q-value function, the agent is able
to compute an initial policy, and use this policy to inter-
act with the real world. The interaction experience is used
to update the Q-value function at runtime, along with the
automated planner (POLICYUP). Intuitively, the automated
planner serves as an optimistic simulator to enable the re-
inforcement learner to learn from interaction experience in
simulation.

GDQ is simply an integration of the two sub-procedures
for OptInit and repeatedly conducted runtime PolicyUP. In-
formally, OptInit helps the agent avoid the near-random ex-
ploration behaviors through a “warm start” enabled by our
automated planner, and PolicyUP guides the agent to only
try the actions that can potentially lead to the ultimate goal.
Next, we validate GDQ, demonstrating experimental results
from comparisons between GDQ and a number of baseline
methods selected from the literature.

3 Experiments
This section focuses on experimentally evaluating that GDQ
performs better than existing RL methods from the litera-
ture in cumulative reward. GDQ has been compared with
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Figure 1: An overview of GDQ. The red-color loop corresponds to the Q-learning and Model learning loop. The agent (robot)
interacts with the environment to update both its world model, and its Q-value function. The blue-color loop corresponds to the
combination of an automated planner with the learning process where goal-independent action knowledge (highly sparse, and
potentially inaccurate) is used for computing action sequences toward goal achievement.
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Figure 2: A map of an indoor office environment.

Q-Learning, Dyna-Q, and DARLING (Leonetti, Iocchi, and
Stone 2016) that reasons with action knowledge to avoid
“unreasonable” exploratory behaviors.

We consider a mobile robot navigation domain, where
the robot needs to navigate in an indoor office environment
showed in Figure 2. In each trial (episode), the robot is
tasked with navigating from its initial position X to a goal
position Y , defined as M(X,Y ). The two tasks, M(P1, P2)
and M(P3, P2), are conducted in this paper. There are
doors connecting rooms and corridors, and there are differ-
ent costs and success rates in navigation and door opening
actions. The robot has four types of actions for navigational
purposes. We have manually labeled six doors on the map.
All doors are automatic, and the robot must get close to it
and open it before taking the gothrough action. Each door
is associated with a success-rate distribution, and another
distribution over action costs. D0, D2, and D5 are difficult
doors, where D2 is the most difficult to be opened. D1, D3,
and D4 are easy, where D3 is the easiest.

Figures 3, 4 present the cumulative rewards collected
from the robot conducting the tasks. These experiments were
repeated 10 times for computing the averages and standard
errors. We observe that GDQ performed the best in learning
rate in comparison to the other three baselines. GDQ has the
most sharpest learning curves at these results, supporting its
learning efficiency.

4 Conclusion
In this paper, we develop Guided Dyna-Q (GDQ) that con-
solidates model-based RL and automated planning. The goal
is to help the agent avoid exploring less-relevant states
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Figure 3: Average cumulative rewards of Task M(P1, P2)

0 500 1000 1500 2000 2500
Episode

−20

−10

0

10

C
u

m
u

la
ti

ve
R

ew
ar

d

Q-Learning Dyna-Q DARLING GDQ

Figure 4: Average cumulative rewards of Task M(P3, P1)

toward speeding up the learning process. GDQ has been
demonstrated and evaluated in the simulation of an indoor
office environment. From the experimental results, using the
widely available action knowledge, GDQ performed signif-
icantly better than competitive baseline methods from the
literature, demonstrating the best performance in learning
efficiency.
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