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Abstract

Reinforcement learning allows learning very accurate heuris-
tics for hard combinatorial puzzles like the 15-puzzle, the 24-
puzzle, and Rubik’s cube. In this paper, we empirically inves-
tigate how to exploit these learned heuristics in the context
of (deterministic) heuristic search with bounded suboptimal-
ity guarantees, using the learned heuristic for the 15 and 24-
puzzle of DeepCubeA. We show that Focal Search (FS), in its
most straightforward form, that is, using the learned heuristic
to sort the focal list, has poor performance when compared
to Focal Discrepancy Search (FDS), a version of FS that we
propose that uses a discrepancy function to sort the focal list.
This is interesting the best performing algorithm does not use
the heuristic values themselves but just the ranking between
the successors of the node. In addition, we show FDS is com-
petitive with satisficing search algorithms Weighted A* and
Greedy Best-First Search.

Introduction
Recent work has shown that reinforcement learning can
learn very accurate heuristics estimators in different sce-
narios, such as domain-independent automated planning
(Ferber, Helmert, and Hoffmann 2020) and combinatorial
puzzles such as Rubik’s cube and the sliding tile puzzle
(Agostinelli et al. 2019).

Given an accurate learned heuristic function, a natural
question to ask is how to exploit such a function within a
bounded-suboptimal search algorithm; i.e, an algorithm that
provides guarantees on the returned solution. This question
is challenging because learned heuristics, even if highly ac-
curate, cannot be assumed be admissible, preventing us from
using well-known bounded-suboptimal algorithms such as
Weighted A*, which rely on an admissible heuristic.

Recently, Araneda, Greco, and Baier (2021) studied vari-
ous ways in which Focal Search (FS) (Pearl and Kim 1982),
a bounded-suboptimal search framework, can be exploited
when given a highly accurate learned policy. An important
empirical finding of their work is that the notion of discrep-
ancy, which given a state action sequence s0a0s1a1 . . . sn
counts the number of times ai would have not been chosen
by the learned policy at state si, results in best search perfor-
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mance. Their work, however, assumed no learned heuristic
values were available.

In this paper, we study how to exploit a learned heuristic
within a bounded-suboptimal search algorithm that uses a
given admissible heuristic to provide suboptimality bounds.
Following previous work, we study how FS can be used for
this problem. In its original form, FS requires two inputs:
an admissible heuristic function h, which is used to sort its
open list, just like A* would, and a function hFOCAL which
is used to sort the so-called FOCAL list. As such, given a
learned inadmissible heuristic h′, the most straightforward
way to apply FS is by setting hFOCAL = h′.

Here, however, we go beyond the straightforward set-
ting, and inspired by the previous work of Araneda, Greco,
and Baier, we propose Focal Discrepancy Search, which
sorts FOCAL using a discrepancy score. To evaluate our
algorithm, we used the learned heuristic of DeepCubeA
(Agostinelli et al. 2019), which provides very accurate
heuristic values, on the 15- and 24- puzzle. We compare our
approach against classical bounded-suboptimal search algo-
rithms, such as Weighted A*, and FS used in the straigh-
forward setting described above. Also, we compare our ap-
proach against satisficing algorithms, which do not deliver
suboptimality guarantees.

Our results show that Focal Discrepancy Search, which
uses the learned heuristic to compute discrepancies, but
which in practice does not exploit the heuristic values them-
selves during search, outperforms all other bounded subop-
timality search algorithms. In addition, Focal Discrepancy
Search is competitive relative to satisficing algorithms. Our
experiments support that, when the objective is to exploit
learned heuristics within bounded-suboptimal search, more
effort should be put on learning an accurate ranking rather
than an accurate cost-to-go estimation.

This is not the first work that has proposed the use of dis-
crepancies in the context of machine learning and search.
Discrepancies have been used in the context of automated
planning with learned heuristics (Yoon, Fern, and Givan
2006, 2007). More recently, Cohen and Beck (2019) es-
tablish a relation between discrepancies and performance
degradation for decoding neural sequence models. However,
to the best of our knowledge, previous work has not studied
heuristic discrepancies for bounded-suboptimal search.



Background
Learned Heuristics
Given a graph (S,E), where S is set of states and E is set of
edges, a search problem is a tuple (sstart, S, E, sgoal) where
sstart and sgoal are, respectively the initial and goal states. A
heuristic function is a non negative function h : S → R0,+

such that h(s) estimates the cost of a path from s to sgoal.
h(s) is admissible iff h(s) ≤ h∗(s) for every s ∈ S, where
h∗ is the cost of a minimum-cost path from s to sgoal.

A learned heuristic is a function hφ : s, φ→ R0,+, which
maps a state s to a prediction of its cost-to-go, where φ is a
set of trainable weights. During training, the weights φ are
updated to minimize a loss function that represents the dif-
ference between hφ(s) and h∗(s). Usually, a learned heuris-
tic is implemented as a deep neural network and could be
trained with stochastic gradient descent and reinforcement
learning or some form of supervision. Due to the inductive
nature of the deep neural nets, it is not possible to ensure that
the predicted value for a state s does not overestimate h∗(s).
For that reason, even if the hφ is very accurate, assume it
inadmissible. Thus use it in a typical bounded suboptimal
heuristic search algorithms, such as Weighted A*, could not
deliver guarantees in terms of solution quality.

Focal Search
Focal Search (FS) (Pearl and Kim 1982) is a well-known
bounded suboptimal search algorithm. In addition to an ad-
missible heuristic, it can guide the search using additional
information. It uses two priority queues: OPEN which is
sorted in ascending order by f(s) = g(s)+h(s), where h is
an admissible heuristic function; and FOCALwhich is sorted
by hFOCAL, an arbitrary priority function, and contains a sub-
set of OPEN. FS receives a parameterw to control the subop-
timality of the solution. The OPEN list contains all generated
and not yet expanded states. The FOCAL list contains every
states in OPEN such that f(s) ≤ wfmin, where fmin is the
minimum f-value of a node in OPEN. At each iteration, it ex-
tracts from FOCAL a state s which minimizes hFOCAL. Then
it expands s. If a generated successor s′ is within the bound,
i.e., f(s′) ≤ wfmin, then s′ is added to FOCAL. State s′ is
also added to OPEN. Since the value of fmin may increase
during execution with a consistent heuristic, nodes that pre-
viously were added to OPEN but not to FOCAL, may have to
be added to FOCAL when fmin increases.

Focal Discrepancy Search
As originally defined by Harvey and Ginsberg (1995) in the
context of Depth-First Search, a discrepancy occurs over a
path when at a certain state of the path s, the action taken
does not lead to child of s with minimum h-value. This con-
cept can be applied to a Best-First search algorithm, select-
ing for expansions the node which has a lower discrepancy.
Discrepancies in Focal Search have been used before in the
context of learned stochastic policies for deterministic do-
mains (Araneda, Greco, and Baier 2021). The resulting al-
gorithm, in every iteration, extracts from FOCAL the state
that maximizes the probability that its path is a prefix of an

optimal path. In our context, the definition of a discrepancy
is based on preferred actions.

We define a preferred action at state s as the node with the
most promising heuristic value between the successors, i.e.

pref state(s) = argmins′∈succ(s){h(s′)} (1)

Assuming that s is a state which during state has been
reached via path σs = s1s2 . . . sn (with s1 = sstart and
sn = s), we defineNnonpref(σs) as the number of times along
the path σs in which the state with best heuristic value was
not taken (i.e,

∑n−1
i=1 [pref state(si) 6= si+1], where [A] =

1 if Boolean expression A evaluates to true, and [A] = 0
otherwise). Thus, we define a discrepancy as:

hdisc best(s) = Nnonpref(σs). (FDS(best))

Discrepancies were originally proposed for binary trees.
Some researchers (e.g., Karoui et al. 2007) have considered
counting discrepancies according to their successor rank in
non-binary trees. In our experimental section we evaluate a
variant of hdisc best, defined as:

hdisc rank(s) = rank(σs), (FDS(rank))

where rank(σs) adds up the h-value rank of each of the
states si+1, for i ∈ {1, . . . , n−1}, where the h-value rank of
si+1 corresponds to the rank of si+1 among all the children
of si. We assume the rank of the best child is 0.

Below FDS(best) and FDS(rank) denote the algorithm
that results by setting hFOCAL to hdisc best and hdisc rank.

Experimental Results
Our empirical evaluation seeks to evaluate the perfomance
of the proposed approach with other bounded suboptimality
search algorithms. On the other hand, we wanted to verify if
the approach is also competitive with satisficing algorithms.

We use the pre-trained models of DeepCubeA
(Agostinelli et al. 2019) for the 15- and 24- puzzle as
the learned heuristic estimator. The pre-trained models are
publicly available1.

For the evaluations, we use the 100 Korf instances for the
15-puzzle (Korf 1985), and the 50 Korf’s instances for the
24-puzzle (Korf and Felner 2002). The pre-trained models
were trained using a different goal state that the goal state
defined by Korf, i.e., in Korf’s instances, the first position
corresponds to empty tile, and in DeepCubeA corresponds to
the last position. Despite that, it is possible to convert a state
to evaluate the heuristic using the model, simply rotating the
puzzle and remapping the tiles.

We evaluate two types of search algorithms that use the
learned heuristic: bounded suboptimality search algorithms
(BSS) and satisficing algorithms (SA). In BSS, we include
FDS(best), FDS(rank), and Focal Search using the learned
heuristic as hfocal (henceforth FS(h nn)). We also include
Weighted A* (wA*) used with the (admissible) Linear Con-
flict heuristic (Hansson, Mayer, and Yung 1992). In SA, we
include wA* using the (non-admissible) learned heuristic
in the same way it was used by DeepCubeA (i.e., setting

1https://github.com/forestagostinelli/DeepCubeA



Table 1: Results for the 15-puzzle with the algorithms using
a suboptimality bound w = 1.5

Coverage Expansions (avg) Cost (avg)
wA* 100% 22100 56.67
FS(h nn) 83% 10414 54.57
FDS(best) 100% 1478 55.47
FDS(rank) 100% 6542 55.45

Table 2: Results for the 24-puzzle with the algorithms using
a suboptimality bound w = 1.5

Coverage Expansions (avg) Cost (avg)
wA* 68% 1519344 112.20
FS(h nn) 96% 4465 111.5
FDS(best) 100% 137 110.26
FDS(rank) 100% 139 109.98

w = 1.25), Greedy Best-First Search (GBFS), and A* with
preferred operators (PrefA*), a variant of Fast-Downward’s
search algorithm (Helmert 2006), where, intuitively, the ac-
tion which leads to a child with minimum h-value is a pre-
ferred operator.

All algorithms were implemented in Python3, and the ex-
periments were run on an Intel Xeon E5-2630 machine with
128GB RAM, using a single CPU core and one GPU Nvidia
Quadro RTX 5000. We use a 30-minute timeout.

Tables 1 and 2 show a summary of the results obtained
on the 15- and 24-puzzle, respectively. They show the per-
centage of problems that each algorithm can solve (cover-
age), the average number of expansions, and the average cost
on 100 instances. On the 15-puzzle, wA*, FDS(best), and
FDS(rank) solved all problems, but FS(h nn) only solved
83% of the instances. In terms of expansions, FDS(best) out-
performs wA* in more than one order of magnitude.

Table 2 shows the results obtained on the 24-puzzle. In
this domain, FDS(best) and FDS(rank) solved all problems,
FS(h nn) solved the 96% (48 instances), and wA* solved
only 56% (28 instances). In terms of expansions, FDS(best)
and FDS(rank) outperforms FS(h nn) by one order of mag-
nitude, and wA* by four orders of magnitude. We observe a
substantial difference in the behavior of the algorithms be-
tween the 15- and 24-puzzle. We attribute this difference to
the fact that the admissible heuristic is inaccurate in complex
or challenging instances, and Focal Search needs to expand
many states in order to prove the suboptimality bound.

Figure 1 shows the results (cumulative runtime, cumula-
tive expansions, and cumulative suboptimality) obtained by
BSS on each domain. We use a square mark to indicate the
search algorithm failed to solve a particular instance. In that
case, we consider the suboptimality of such a solution to be
w times the optimal cost (for the 24-puzzle problems we use
the optimal cost reported by (Korf and Felner 2002). In ad-
dition, when a problem is not solved we do not increment
the cumulative runtime and cumulative expansions.

On the 15-puzzle, FDS(best) outperforms wA* by one
order of magnitude with respect to number of expansions.
Nevertheless, both require a similar time. This is due to

the fact that expansions are slower when using h nn; in
fact, they are one order of magnitude slower. We observe
that FDS(best) loses advantage over wA* for the last 30 in-
stances. This may be due to the fact that many search states
have the same f -values and many expansion are needed to
make progress in the search.

On the 24-puzzle, the plot shows that FDS(best) and
FDS(rank) outperform wA* by four orders of magnitude re-
garding the number of expansions. Also, we observe that
FDS(best) and FDS(rank) outperform FS(h nn) in more than
one order of magnitude.

Figure 2 shows the results obtained by satisficing algo-
rithms and FDS(best) (with suboptimality bound 1.5 and
2.0) for the 15 and 24-puzzle. We included FDS(best) be-
cause it was the best performing among the BSS algorithms.
On the 15-puzzle, the figure shows that GBFS and PrefA*
make almost the same number of expansions as the solu-
tion cost in all instances. On the other hand, wA*(h nn)
makes more expansions but produces better solutions. We
observe that, in the first 30 instances, all algorithms per-
form similarly, but as the problem becomes more complex,
FDS and wA*(h nn) require more expansions. On 24-puzzle
domain, we observe that all algorithms perform expansions
within the same order of magnitude. Remarkably, we ob-
serve that FDS(best), a bounded suboptimality algorithm
with different properties, is very competitive with satisfic-
ing algorithms, and as the suboptimality bound is enlarged,
perform similar expansions and produce similar solutions.

In summary, the results show that FDS(best), which is a
straightforward way to include discrepancies in the FOCAL
list, outperforms all other BSS algorithms in terms of expan-
sions and solution quality, and it is very competitive with
(incomplete and without guaranties) satisficing algorithms.

Discussion
Once that an accurate heuristic estimator has been learned,
the next step is to determine how to use and exploit it within
a search procedure. The most straightforward method to use
a learned heuristic is to follow the heuristic estimator to the
most promising state, for example by using it directly with
GBFS. However, by doing so, we obtain a solution that does
not have any theoretical guarantees.

A classical question in AI is how to combine inductive
knowledge, such as a learned heuristic, with a symbolic pro-
cedure. In this paper we aims at exploiting such inductive
knowledge acquired with reinforcement learning within a
heuristic search algorithm. In addition, our algorithm needs
a user-given admissible heuristic that is necessary to pro-
vide suboptimality guarantees and complement the power
of a learned heuristic with theoretical bounds.

The literature has also studied how to take advantage of
heuristics search to enables the rapid learning of heuristics
and policies (Orseau and Lelis 2021), which may be the next
step of this research.

Conclusions and Future Work
In this paper, we present Focal Discrepancy Search, a
method that uses Focal Search to exploit a given learned
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Figure 1: Results in 15- and 24-puzzle for bounded suboptimality search algorithms
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Figure 2: Results for 15- and 24-puzzle for satisficing algorithms and FDS(best), a bounded suboptimality search algorithm.



heuristic. We show that it is possible to exploit an (inadmis-
sible) learned heuristic together with an admissible heuris-
tic, in a bounded suboptimality search procedure that pro-
vides suboptimality guarantees. This idea has already been
exploited in the context of learned policies and in this paper
we show a simple way of adapting it to the context of learned
heuristics. Our experiments were built over DeepCubeA, a
recent framework that learns very accurate heuristics for
puzzle games with Reinforcement Learning. We show that
FDS outperforms others bounded-suboptimality search al-
gorithms, such as wA*, up to four orders of magnitude, and
it is competitive with satisficing algorithms which do not
provide suboptimality guaranties. Also, we show that FDS
outperforms FS(h nn), which uses the heuristic value to sort
the FOCAL list. We perform experiments using a subopti-
mality bound, but it can be also applied to bounded cost.
An important conclusion is that our results suggest that it
may be more important to learn to rank successors in or-
der to compute discrepancies rather than learning cost-to-go
values. As future work, we seek to move this approach to
a parallel/concurrent algorithm that could exploit the GPU
resources to compute the heuristic values.
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