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Abstract
Probabilistic planning problems are often formulated in terms
of a domain class that describes the general problem struc-
ture, and in terms of an instantiation of the domain, which
yields a particular MDP. Most algorithms in probabilistic
planning focus on computing policies for a single MDP.
A relational policy represents a solution to any MDP induced
from the same domain class. We present a graph neural net-
work architecture that is based on a representation of the rela-
tion between types of a given domain and which allows us to
generalize from small instances to large instances of the same
domain class. Unlike other work, we do not impose restric-
tions on the structure of the domain. We conduct a prelim-
inary study which compares the relational policies obtained
from a network trained on small instances against a policy
computed by a state-of-the-art domain-independent planner.
The evaluation shows that the network generalizes well across
instances of a domain, and is even able to outperform the
instance-dependent policy in some of the benchmarks.

Introduction
Probabilistic decision making problems allow to model an
agent navigating an inherent uncertain world. Markov deci-
sion processes (MDPs) (Puterman 1994) are a well-known
problem formalism for such problems, where we aim for a
policy, i.e. a mapping from states to actions, that maximises
some optimisation criterion, usually the average expected re-
ward. A vast amount of research inspired from various fields
of AI is concerned with finding ’good’ or even optimal poli-
cies. Popular solution approaches are heuristic search algo-
rithms such as LAO* (Hansen and Zilberstein 2001) and
LRTDP (Bonet and Geffner 2003), tree-search algorithms
such as MCTS (Browne et al. 2012) and UCT (Kocsis and
Szepesvári 2006), hybrids that combine systematic heuristic
search with the exploit/explore property of tree search such
as UCT‹(Keller and Helmert 2013), or hybrids that combine
search and learning such as AlphaZero (Silver et al. 2017).
A common property of these approaches is that they are de-
fined on a problem-independent level and thus applicable to
a large variety of problems. Yet, the solution that is com-
puted is instance-dependent, i.e. the policy that is good for
one problem is not necessarily good for another problem,
even if both problems belong to the same domain class.

Recently, there has been an increased interest in finding
generalized policies, i.e. a policy that is applicable to every

problem of a given domain class. This is partially inspired
from the field of planning, where the input to planning al-
gorithms is a domain file, specifying the general problem
structure, and an instance file, that fixes free variables in
the domain to a specific instance. Examples of modeling
languages that support this approach are the classical plan-
ning modeling language PDDL (McDermott 2000), its prob-
abilistic counterpart PPDDL (Younes and Littman 2004),
and the dynamic Bayesian net inspired modeling language
RDDL (Sanner 2010). Different work concerned with gen-
eralized policies supports different modeling languages and
has its focus on different aspects of generalization. For ex-
ample, the STRIPS-HGN architecture of Shen, Trevizan,
and Thiébaux (2020) aims to represent value functions that
allow to generalize across domains. Action schema networks
(Toyer et al. 2018) take the lifted representation of SSPs
as input and compute a generalized policy applicable to all
instantiated SSPs of that representation. In particular, they
exploit that actions of different instances are instantiations
of a common action schema. SymNet (Garg, Bajpai, and
Mausam 2020) aims to compute generalized policies for
problems specified in RDDL and its generalized policy is
based on the information hidden in the dynamic Bayesian
net that underlies each RDDL model. The work by Garg,
Bajpai, and Mausam (2019) is the most closest related to our
work. TraPSNet computes a generalized policy based on the
first-order representation of an MDP. However, a significant
limitation of the approach is that they assume that all fluents
are unary, except one non-fluent that is binary.

Our work can be seen as a generalization of TraPSNet to
arbitrary fluent size. Given a first-order MDP, we construct
the domain graph which represents types and relations be-
tween types of a domain. The instance graph shares the same
topology as the domain graph, but is induced from a given
instance of the domain. Like aforementioned works we use
graph neural networks (Battaglia et al. 2018) to represent
relational policies. The domain graph determines the archi-
tecture of the graph neural network, while the instance graph
serves as input to the network. This allows us to train the net-
work on small-sized instances and use the trained network
to compute a policy for arbitrary larger instances. We con-
duct a preliminary study and compare our relational policies
against policies computed by the PROST planner (Keller and
Eyerich 2012), the winner of the international probabilistic



planning competition 2014. Depending on the domain, the
relational policy obtained from training on small instances
for a moderate amount of time can outperform the policy
computed by PROST.

Background
An MDP (Puterman 1994) is a tuple M “ xS, A,P,Ry,
where S is a finite set of states, A is a finite set of actions,
R : S ˆ A Ñ R is the reward function, and the transition
function P : S ˆ A ˆ S Ñ r0, 1s defines the probability
Pps1|s, aq that applying action a in state s leads to state s1.
We define the set of successors of state s and action a as
succps, aq “ ts1 P S|Pps1|s, aq ą 0u. We say action a is
applicable in state s iff succps, aq ‰ H and denote the set of
applicable actions in s as Apsq.

In a finite-horizon MDP the horizon H P N limits
the number of action applications. A common approach
(Mausam and Kolobov 2012) is to augment the state space
such that the number of remaining steps is part of a state,
denoted by srhs for s P S. We have Pps1|s, aq “ 0 if
srhs ‰ s1rhs ´ 1, to enforce that the number of remaining
steps decreases by one in each transition. We further assume
that Apsq ‰ H for all s P S to ensure that there are no
dead-ends. A terminal state is a state with srhs “ 0, and sI
specifies the initial state.

A solution to an MDP is a policy π : S Ñ A, i.e. a
mapping from states to actions. The expected reward of π
is given by the state-value function V πpMq “ V πpsIq with

V πpsq “

"

0 if s is terminal,
Qπps, πpsqq otherwise,

where Qπps, aq “ Rps, aq `
ř

s1PS Pps1|s, aq ¨ V πps1q is
the action-value function. An optimal policy π‹ is a solu-
tion to the well-known Bellman optimality equation (Bell-
man 1957):

V ˚psq “

"

0 if s is terminal,
maxaPAQ

˚ps, aq otherwise,

Q˚ “ Rps, aq `
ÿ

s1PS
Pps1|s, aq ¨ V ˚ps1q.

A factored MDP is a compact description of an MDP
which describes states and actions in terms of state variables
V and action variables A, each associated with a finite do-
main Dv Ă Q for v P V Y A. A partial state assignment is
a partial function s : V ãÑ

Ť

vPV Dv, such that spvq P Dv

for all v P V where s is defined. If s assigns a value to each
v P V we call s simply a state. Partial action assignments
are defined analogously, and actions correspond to full ac-
tion assignments.

In this work we consider first-order representations of
factored MDPs. A Relational Markov Decision Process
(RMDP) (Garg, Bajpai, and Mausam 2020) is a tuple R “

xT,S,A,N,P,Ry, where T is a set of types, S, A and N are
sets of predicate symbols denoted as state fluents, action flu-
ents, and static fluents, respectively; we denote the set of all

fluents1 as F “ S Y A Y N. The lifted transition function
P and the lifted reward function R describe the dynamics
of the first-order MDP. Predicate symbols denote relations
of and between objects. Given a set of objects O, the func-
tion type : O Ñ T associates an object with its type. Each
predicate symbol f P F takes a tuple xo1, . . . , ony of type-
consistent objects as arguments, i.e. f is associated with a
tuple of types xt1, . . . , tny, and each argument oi is associ-
ated with ti. An object o is then a valid argument for oi if
typepoq “ ti. We denote the tuple of arguments for f with
argpfq. We say a predicate symbol is unparameterized if it
takes no arguments as input. Applying predicates to type-
consistent objects is known as the process of grounding and
yields a factored MDP. The set of state variables V consists
of the application of all f P S to all type-consistent objects O.
Analogously, the set of action variables A consists of the ap-
plication of f P A. The initial state value of each variable is
obtained from a partial initial state description ŝI : F Ñ Q,
which assigns the same value to those variables that are in-
duced by a common predicate. Static fluents yield static state
variables whose initial domain value is fixed and does not
change throughout planning. Thus, given a RMDP R, a set
of typed objects O, and an initial state description ŝI the
process of grounding induces a factored MDP, where state
and action variables are obtained by grounding the relational
MDP, transition and reward functions are obtained by appli-
cation of the lifted transition and reward function, and the
initial state is given by ŝI . For simplification, we consider
the specific process of grounding as a black-box that takes
a set of objects O and a predicate symbol f P F and gen-
erates all valid applications of f to O, i.e. a set of tuples,
such that each tuple is consistent with argpfq. Additionally,
the grounding process may prune irrelevant tuples. We are
not interested in the details of the grounding process, and
instead only consider the resulting set of tuples (instead of
explicit variables), which we denote as groundpf,Oq.

Often, a relational MDP is called a domain, and the fac-
tored MDP resulting from grounding R with a set of ob-
jects O and initial state description ŝI is called an instance.
Most probabilistic planning algorithms are defined on the
instance level, i.e. the algorithm computes a policy for an
MDP M. Planners relying on such algorithms receive a do-
main description which corresponds to the RMDP R, and
an instance description which corresponds to the set of ob-
jects in this instance and the initial state description. Before
planning starts, the planner then performs grounding which
results in the MDP M. The aim of this paper is to compute
a generalized policy for a domain which yields a policy πM

for any instance M of this domain. Optimally, we would
like πM “ π‹.

Throughout the paper we will use the elevator do-
main as a running example. In this domain, a num-
ber of elevators will be controlled to deliver passengers
who arrive randomly at each floor to a destination floor.
In this domain, the types T are tfloor, elevatoru. For

1In the literature, the term fluents is sometimes used to denote
state and action variables of a factored MDP. In this work we use
the term ’fluents’ to denote first-order predicates instead.



simplicity, we denote predicates together with their ar-
gument tuples. Then, the state fluents S are tperson-
waiting-at-floor(elevator, floor), elevator-at-floor(elevator,
floor)u which are used to specify people’s and eleva-
tors’ states. The action fluents A are tgo-up(elevator), go-
down(elevator), open-door(elevator), close-door(elevator)u
which are used to control one of the elevators. And
the static fluents N are tTOP-FLOOR(floor), BOTTOM-
FLOOR(floor), ADJACENT-FLOORS(floor, floor)u which
are used to specify the topology of the floors. The reward
function R is such that there are costs if some person is wait-
ing for an elevator at some floor, and the transition function
P is used to specify the dynamics of the elevators. Given
a set of objects O “ te0, f0, f1, f2u such that typepe0q “
elevator and typepf0q “ typepf1q “ typepf2q “ floor, we
get groundpelevator-at-floor, te0, f0, f1, f2uq “ txe0, f0y,
xe0, f1y, xe0, f2y}. As mentioned, grounding may remove
irrelevant argument tuples. For example, xf0, f0y, is a pos-
sible argument of ADJACENT-FLOORS but may be pruned
if the initial state description only specifies the topology be-
tween f0, f1, and f2, i.e. the grounding process may realize
that floor f0 is not adjacent to itself.

Graph Neural Networks
Graph neural networks (Battaglia et al. 2018) define func-
tions over graph representations G “ pV,Eq. Our definition
slightly differs from Battaglia et al. to fit the context of the
paper. Each vertex v P V is associated with an embedding
vector hv0 P Rd

v
0 of dimension dv0 . The graph neural network

(GNN) takes G as input and iteratively updates the embed-
ding of each vertex v overK steps. More specifically, at each
forward step k P t1, . . . ,Ku the embedding of vertex v at
step k is defined as hvk “ φθ1phvk´1}ρ

θ2pEv, k ´ 1qq where
} denotes vector concatenation, Ev denotes the set of edges
connecting to v, φθ1 is an update function parameterized by
weights θ1, and ρθ2 is an aggregation function parameterized
by weights θ2 whose output is a single aggregated vector.

Graph neural networks allow us to define update and ag-
gregation function on the domain level, while the network
input and therefore each update step operates on the domain
level. As a result, we can train the network with input from
small-sized instances and use it to compute a policy for large
instances. The following sections are concerned with the
definition of the graphs that serve as input, and the result-
ing network architecture which allows to represent a general
policy.

Graph Representations of RMDPs
We first describe the domain and instance graph, which we
will use to construct a graph neural network architecture.
Given a RMDP R “ xT,S,A,N,P,Ry the domain graph
Gd “ pVT Y VF,Edq is a bipartite undirected edge-labeled
multigraph that shows relations between types in a domain.
Vertices are partitioned into two sets: Type vertices VT cor-
respond to types. There is a vertex for each type t P T and
an additional master type vertex denoted as masterd. We
will sometimes abuse notation and refer with t to the type
vertex associated with t if it is clear from the context, thus

VT “ T Y tmasterdu. Type relation vertices VF correspond
to argument tuples of predicate symbols F. Let Args “
targpfq|f P Fu be the set of all predicate argument tuples.
Then, there is a relation vertex for each a P Args. Addition-
ally, there is a relation vertex pt,masterdq for each t P T, and
finally a single relation vertex pmasterd), which will be used
to represent unparameterized fluents. By abuse of notation
we thus have VF “ ArgsY

Ť

tPTpt,masterdqYtpmasterdqu.
Edges connect relation vertices to type vertices. Let vF be

a relation vertex associated with argument tuple xt1, . . . , tny
and vt be a type vertex associated with type t. Then, for
each i P t1, . . . , nu there is an edge between vF and vt la-
beled with i if and only if t “ ti. Observe that this implies
that Gd may be a multigraph, i.e. two vertices may be con-
nected by multiple edges. Additionally, for each t P t there
is an edge labeled with 1 between vt and pt,masterdq and
an edge labeled with 2 between masterd and pt,masterdq.
Finally, there is an edge labeled with 1 between masterd and
pmasterdq.

While the domain graph is based on the first-order rep-
resentation of an MDP, the instance graph Gi “ pVO Y

Vground,Eiq represents the structure of a particular problem
instance and thus shows relations between objects in the
grounded representation. Again, vertices are partitioned into
two sets: object vertices and object relation vertices. Object
vertices VO correspond to objects, and there is a vertex for
each object o P O, and again an additional master object ver-
tex, which will be denoted by masteri. Again, we may refer
with o to the object vertex associated with o, thus VO “

O Y tmasteriu. Object relation vertices Vground correspond
to grounded argument tuples of predicate symbols F. Recall
that groundpf,Oq corresponds to the set of grounded argu-
ment tuples for f. LetG “ tgroundpf,Oq|f P Fu be the set of
all grounded argument tuples. There is a vertex for each tu-
ple in G. Additionally, there is a vertex po,masteriq for each
o P O and finally single object relation vertex pmasteriq. By
abuse of notation we thus have Vground “ tgroundpf,Oq|f P
FuY

Ť

oPOpo,masteriqYtpmasteriqu. In the instance graph,
edges connect relation vertices to object vertices. Let vground
be a relation vertex associated with grounded argument tu-
ple xo1, . . . , ony and vo be an object vertex associated with
object o. Then, for each i P t1, . . . , nu there is an edge la-
beled with i between vground and vo if and only if o “ oi.
Again, observe that this may result in multiple edges be-
tween vground and vo. Edges between vo and po,masteriq,
respectively po,masteriq and pmasteriq, are defined analo-
gously to their corresponding edges in the domain graph.

Informally, the instance graph corresponds to a grounded
form of the domain graph. We can express this formally by
making use of the type function that maps objects to their
types and we define a graph homomorphism map : VO Y

Vground Ñ VT Y VF in the following way:
1. mappmasteriq “ masterd,
2. mappoq “ typepoq,
3. mapppo,masteriqq “ ptypepoq,masterdq;
4. Let vground be an object relation vertex associ-

ated with grounded argument tuple xo1, . . . , ony. Then
mappvgroundq “ vF, where vF is the type relation



vertex associated with argument tuple xt1, . . . , tny and
typepoiq “ ti for i P t1, . . . , nu.

Consider again the elevator domain with the set of objects
te0, f0, f1, f2u. The left-hand side of Figure 1 shows a sub-
graph of the domain graph, and the corresponding subgraph
of the instance graph on the right-hand side. Type consis-
tency is indicated by colours and the predicates inducing the
argument tuples are annotated for the type relation and ob-
ject relation vertices. Note that in the instance subgraph, the
vertex f1 connects to the vertex xf0, f1y with a 2-labeled
(purple dashed) edge, but to the vertex xf1, f2y with a 1-
labeled (cyan) edge. Intuitively, the label of an edge repre-
sents the argument index of the object in the corresponding
object relation.

Network Architecture
The previously introduced graphs serve as the basis for our
graph neural network. The underlying idea is that the do-
main graph determines the architecture of the graph neu-
ral network, while the instance graph serves as input to the
network. For this, every vertex v in the instance graph is
associated with an initial real-valued embedding vector hv0
and the embedding at step k ` 1 is computed by a for-
ward pass over the network at step k, defined formally as
hvk`1 “ φphvk}ρpEv, k ´ 1qq. We will now define the initial
embedding hv0 , and update and aggregation functions φ and
ρ. The final embedding at step K ` 1 will then be used by a
decoder module to compute a policy for the MDP.

Instance vertex embedding
Let Gi “ pVO Y Vground,Eiq be an instance graph. For ev-
ery vertex v P VO Y Vground and every k P t0, . . . ,K ` 1u
we define hvk as the embedding of v at step k, where hvk is
a real-valued vector with dimension dkv . While two embed-
dings may have a different dimension, we emphasize that
the dimension only depends on the domain, the type of the
vertex, and the current step k. In particular, the dimension is
independent of the instance description.

For object vertices v P VO we define the initial embedding
hv0 as an empty vector of dimension 0. The initial embedding
of object relation vertices v P Vground depends on the type
of v:

1. If v “ pmasteriq, the initial embedding hv0 is a vector
consisting of the initial state values of all unparameterized
fluents.

2. Let f P SYN and V1ground be the set of object relation ver-
tices associated with groundpf,Oq. Observe that f is not
an action fluent. Let v “ xo1, . . . , ony P V1ground and F1 be
the set of fluents for which xo1, . . . , ony is a grounded ar-
gument tuple. Then, we define hv0 “ xŝIpf1q, . . . , ŝIpfnqy,
i.e. the initial state value associated with each fluent fi P
F1. 2

2The observant reader may notice that this requires a total order
on the fluents in F1. In practice, we consider the fluents in lexico-
graphical order of their label.

3. The embedding of all other object relation vertices is an
empty vector of dimension 0. Note that these are the ver-
tices for which the associated grounded argument tuple
is only obtained from action fluents, and the vertices that
consist of po,masteriq for each o P O.

Consider the instance subgraph of Figure 1. The initial
embedding of the object relation vertex xf0, f1y is a one-
dimensional vector

“

ŝI
`

ADJACENT-FLOORSxf0, f1y
˘‰

,
and the initial embedding of the object relation vertex xf1y
is a two-dimensional vector

“

ŝI
`

BOTTOM-FLOORxf1y
˘

,
ŝI
`

TOP-FLOORxf1y
˘‰

. Observe that for any instance that
has an object f1, the dimension of the associated vertex em-
bedding is 2, which is instance independent. What is in-
stance dependent is the information whether f1 is the top
and/or bottom floor given by ŝI .

Updating object relation vertices
Let Gd “ pVT Y VF,Edq be a domain graph. Node em-
beddings of the instance graph serve as input to the neu-
ral network modules associated with the domain graph. For
each type relation vertex vF P VF and each step k P

t0, . . . ,Ku there is a distinct neural network module φvFk
associated with vF and k. An object relation vertex vground
associated with grounded argument tuple xo1, . . . , ony and
mappvgroundq “ vF will use φvFk to update its embedding at
step k in the following way: hvgroundk`1 “ φvFk px

vground
k q, where

x
vground
k “ rh

vground
k , ho1k , . . . , h

on
k s

T , i.e. the embedding of
vground at step k together with the embeddings of the associ-
ated object vertices oi.

Note that the concatenation order of the object vertex em-
beddings (i.e. the information that the embedding of oi is
the pi ` 1q-th vector in xvgroundk ) is obtained from the edge
label between vground and oi. Additionally, the dimension of
h
vground
k`1 is determined by the output size of φvFk , and thus is a

hyper-parameter of the graph neural network.
Consider again Figure 1 with object relation vertex

xf0, f1y. Applying the update once gives us h
xf0,f1y
1 “

φ
xfloor,floory
0

`

x
xf0,f1y
0

˘

, s.t. xxf0,f1y0 “ rh
xf0,f1y
0 , hf00 , h

f1
0 s

T .

Updating object vertices
By definition, object relation vertices that map to the same
type relation vertex vF have an equal number of adjacent ver-
tices (the number of arguments associated with vF), there-
fore a simple multi-layer perceptron with fixed input size is
sufficient for those vertices to perform aggregation. This is
however not guaranteed for object vertices that map to the
same type vertex. We therefore have to aggregate a set of
vectors with unknown cardinality. For this, we use attention
layers (Velickovic et al. 2018).

In the following, we denote an edge between two vertices
v and v1 labeled with i as pv, i, v1q. For all pt, i, vFq P Ed

and k P t0, . . . ,Ku there is a distinct neural network mod-
ule φpt,i,vFqk . An object vertex o will use these modules to
aggregate the embeddings of its neighbours and update its
own embedding at step k by using the attention mechanism,
which we describe in the following steps:



Figure 1: Subgraphs of the domain and instance graphs for the elevator domain. Rectangular vertices correspond to the type
relation and object relation vertices, circular vertices correspond to type and object vertices.

1. Given object node o, the input for module φpt,i,vFqk is the
embedding of object relation vertices V 1 Ă Vground, such
that v1 P V 1 iff po, i, v1q P Ei, mappoq “ t and mappv1q “
vF.

2. Each module φ
pt,i,vFq
k aggregates its input to output a

vector ho,pt,i,vFqk . Aggregation follows the attention layer
mechanism of Velickovic et al. (2018).

3. The output vectors are concatenated, resulting in the sin-
gle new object-embedding hok`1 “ }ePE1ho,ek , where E1 “
tpt, i, vFq P Ed|typepoq “ tu.

Consider again Figure 1. We will show how the ob-
ject vertex f1 updates its embedding. Observe that f1 has
three connecting edges: pf1, 1, xf1yq (green dotted edge),
pf1, 2, xf0, f1yq (purple dashed edge) and pf1, 1, xf1, f2yq
(cyan plain edge). Each edge corresponds to exactly one
module: φpfloor,1,xflooryq will aggregate the set thxf1y1 u us-
ing an attention layer to obtain h

f1,pfloor,1,xflooryq
1 . Simi-

larly, we can obtain h
f1,pfloor,2,xfloor,flooryq
1 by aggregat-

ing thxf0,f1y1 u and hf1,pfloor,1,xfloor,flooryq1 by aggregating
th
xf1,f2y
1 u. Finally, we concatenate the three vectors to ob-

tain the new embedding hf12 . Note that in this example all
three attention layers are performed on singletons. In gen-
eral this might not be the case.

Action Decoders
The aim of our network architecture is to output a pol-
icy, i.e. a distribution over the grounded action fluents. For
this, we require a network module φa for each action flu-
ent a P A. Let a “ groundpa,Oq be a grounded action
fluent with argument tuple xo1, . . . , ony and let vground be
the corresponding object relation vertex. The input to φa is

a vector rhvgroundK`1 , h
o1
K`1, . . . , h

on
K`1, h

masteri
K`1 s

T and the output
is ha P R, which is an estimated value of action a. If a
is unparameterized the input is simply hmasteri

K`1 . To get the
final probability distribution we pass the estimated values
produced by the decoders through a softmax function, de-
fined as softmaxpzqi “ ezi{

řC
j“1 e

zj for i P t1, . . . , Cu
and z “ pz1, . . . , zcq P RC .

This concludes the description of our network architec-
ture, resulting in the following workflow: given a graph neu-
ral network GNN associated with domain graph Gd and in-
stance graph Gi, we compute the initial embedding of ev-
ery vertex in the instance graph, perform K forward pass
steps, update every embedding in each step, and run the cor-
responding action encoder for each action fluent, whose out-
put will then become normalized action estimates resulting
in a policy π. Algorithm 1 summarises this process.

Empirical Evaluation
We perform a preliminary study of the generalization power
of our network architecture on four domains of the bench-
mark set of the probabilistic track of the international plan-
ning competition (IPC) 2014. Each problem is modeled in
the relational dynamic influence language (RDDL) (San-
ner 2010). A RDDL problem consists of a domain descrip-
tion which corresponds to the relational MDP R, and an in-
stance specification which yields the problem instance. We
can thus construct the domain graph Gd “ pVT Y VF,Edq

from the domain description, and the instance graph Gi “

pVO Y Vground,Eiq from the instance specification.

Experiment setup
To evaluate the network’s ability to generalise from small
instances to large instances, the three smallest instances are



Algorithm 1: Forward pass of the GNN
1 for k in r0,Ks do
2 for each object relation vertex vground P Vground

do
3 Update the embedding to get hvgroundk`1 ;
4 end
5 for each object vertex o P VO do
6 Update the embedding to get hok`1;
7 end
8 end
9 for each grounded action-fluent a P groundpa,Oq do

10 Run the corresponding decoder φa to get action
estimate ha;

11 end
12 Normalize action estimates thau using softmax to

get a policy π;
13 return The estimated policy π

used to train the network while the remaining instances are
used to evaluate the network. To generate training data we
use the UCT ‹ algorithm of the PROST planner (Keller and
Eyerich 2012). For each of the three training instances we
give the planner a time-limit of 30s per step and plan for 100
rounds. In many cases, this results in almost optimal poli-
cies for each of the three instances, which are used to train
the network in a supervised learning way. More precisely,
let Di “

Ť

jtsj , πjpsjqu be the training data for instance
i, where each sj is a state and πjpsjq is the generated pol-
icy for that state. The overall training data for the network is
then D “

Ť

itDiu containing results of the three instances.
Then we apply the backpropagation algorithm to compute
the gradients for each instance and those gradients are then
summed up such that we can perform stochastic gradient de-
scent to update the network. We use cross-entropy loss func-
tion and the learning rate is 0.01. We train each network for
approximately 4 hours.

We implemented the network architecture in C++, using
PyTorch and the PROST planner as the underlying planning
framework. Training and evaluation are conducted on a PC
with a i7-10870H CPU and 16GB RAM. We set the num-
ber of forward steps to K “ 5 and each network module is
implemented as a three-layer perceptron with ReLU nonlin-
earity.

Evaluation
For each problem instance we use the trained network to
perform a forward-pass over the instance graph overK steps
and apply the resulting policy π in every round. We compare
against PROST using UCT ‹ with a time limit of 1 second
per step, which was the competition setting of the IPC 2014.
We emphasize that this is a preliminary evaluation, and the
nature of domain-independent online planners is different to
our pre-trained relational policies. Nevertheless, the PROST
planner is the winner of the IPC 2014, thus we can get some
insight on the performance of our network when evaluated
on larger instances. It is noteworthy that the construction and

evaluation of our policy π is several orders of magnitude
faster than the total time that we allow for PROST.

Table 1 shows the average reward based on 100 rounds
and the 95% confidence intervals of rewards for each do-
main. For Tamarisk the average reward of the network pol-
icy is generally higher, however, when we consider the range
of the confidence intervals both algorithms perform equally
strong. For Wildfire and Sysadmin the network significantly
outperforms the PROST planner in almost every instance.
However, this picture is reversed for the Elevator domain.
While the performance on the trained instances is almost
equal, PROST significantly outperforms the network on the
remaining instances. Elevator is a domain where PROST
computes close to optimal policies for every instance, which
is clearly not the case for the network.

It is worth to mention that the PROST planner is highly
efficient on the Elevator domain, which is solved optimally
on many of the instances. This is different to Sysadmin,
Tamarisk and Wildfire, which are more complex domains
where it is harder to compute an optimal policy in the given
time limit. Unfortunately, the average reward of an optimal
policy for these domains is unknown, which makes it hard to
precisely estimate the performance of our relational policies.
Nevertheless, the generalisation aspect from small problems
to larger problems is clearly noticable, as the performance
of harder problems does not significantly deteriorate.

Conclusion
In this paper, we presented a novel network architecture
based on the domain graph of a given problem class. Unlike
the networks of Garg, Bajpai, and Mausam (2019) we can
deal with fluents of arbitrary size. The comparison against
the PROST planner shows that our networks can generalize
well across instances of different size.

However, this study serves only as a first step towards an
understanding of the generalization power of our network. In
particular, it is an open question how our architecture com-
pares to other related work, such as the RDDL specific Sym-
Net architecture of Garg, Bajpai, and Mausam (2020), or the
Action Schema networks of Toyer et al. (2018). One partic-
ularly interesting aspect that deserves a thorough inspection
is that unlike other works our network architecture is in prin-
ciple independent of modeling language in which the lifted
MDP is described, i.e. we should be able to support PPDDL
problems as well without having to adapt the network struc-
ture.
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