
End-to-End Risk-Aware Planning by Gradient Descent

Noah Patton*, Jihwan Jeong*, Michael Gimelfarb*†, Scott Sanner†

Department of Mechanical & Industrial Engineering, University of Toronto, Canada
noah.patton@mail.utoronto.ca, jhjeong@mie.utoronto.ca, mike.gimelfarb@mail.utoronto.ca, ssanner@mie.utoronto.ca

Abstract

Planning provides a framework for optimizing sequential de-
cisions in potentially complex environments. A recent ad-
vance in efficient planning in deterministic high-dimensional
domains with continuous action spaces leverages backprop-
agation through a model of the environment to directly op-
timize the actions. However, this method does not take risk
into account when optimizing decisions in highly stochastic
environments. We address this problem by introducing Risk-
Aware Planning using PyTorch (RAPTOR), a framework that
handles risk in stochastic planning domains through an end-
to-end optimization of entropic utility. While we cannot di-
rectly formalize the distributionally-defined entropic utility
in closed-form for end-to-end planning, in settings where all
MDP stochasticity is defined through the location-scale fam-
ily, we can reparameterize the objective and apply stochastic
backpropagation. What is notable in this approach is that the
entropic utility is defined based on sufficient statistics com-
puted from forward sampled trajectories, but due to the nature
of autodifferentiation, we can still backpropagate through the
entropic utility and these sufficient statistics. The resulting
sequence of actions, which we call the risk-sensitive straight-
line plan, provides a lower bound on the utility of the optimal
policy and can be seen as a form of hindsight optimization.
We evaluate RAPTOR on two highly stochastic domains,
including nonlinear navigation and linear reservoir control,
demonstrating the ability to manage risk in complex MDPs.

1 Introduction
As more machine learning models are deployed in the real
world, the concern over ensuring their safety has been ever-
increasing (Faria 2018; Pereira and Thomas 2020). In se-
quential stochastic decision-making problems in particular,
it has been shown that optimizing the expected cumula-
tive reward can lead to undesirable outcomes such as ex-
cessive risk-taking, since low-probability catastrophic out-
comes with negative reward, or risk, are often underrepre-
sented (Moldovan 2014). The risk-averse MDP addresses
this problem by optimizing risk measures with favorable
mathematical properties (Ruszczyński 2010).

*Authors contributed equally.
†Affiliate to Vector Institute, Toronto, Canada.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Planning learns optimal decisions or actions given a
mathematical description of the environment, thus minimiz-
ing the need to do dangerous exploration in the real world.
However, despite advances in scalable end-to-end planning
techniques, existing approaches do not typically take risk
into account. In particular, BackpropPlan (Wu, Say, and
Sanner 2017) utilizes recent advances in deep learning and
is highly scalable in continuous state or action spaces. In
this framework, the transition model and reward are en-
coded in RNN-like cells. Unlike a typical neural network,
the inputs to the network are the actions that are optimized
through backpropagation. By employing a highly effective
non-convex optimizer (Tieleman and Hinton 2012), Back-
propPlan is able to efficiently learn optimal sequences of ac-
tions in continuous state and action planning domains. How-
ever, its main limitation is that it cannot even be applied to
stochastic models. This could be addressed by learning re-
active policies in continuous state and action MDPs (CSA-
MDPs) (Bueno et al. 2019); however, this work also does
not incorporate risk into the decision-making.

In this paper, we propose RAPTOR (Risk-Aware Planning
using pyTORch), which enables scalable risk-aware end-to-
end planning for continuous state and action MDPs lever-
aging autodifferentiation (Paszke et al. 2019) for gradient-
based optimization w.r.t. the MDP model and an entropic
utility objective. To achieve this, we begin by leveraging an
extension of BackpropPlan to accommodate stochastic tran-
sitions (Bueno et al. 2019), by representing the planning do-
main as a stochastic computation graph (Section 3.1). While
we cannot directly formalize the distributionally-defined en-
tropic utility in closed-form for end-to-end planning, in set-
tings where all MDP stochasticity is defined through the
location-scale family, we can reparameterize the objective
and apply stochastic backpropagation (Section 3.2). This al-
lows us to compute the entropic utility directly from the suf-
ficient statistics of forward sampled trajectories, while still
permitting backpropagation through the entropic utility and
its symbolic computation from sufficient statistics of trajec-
tories thanks to autodifferentiation and reparameterization.

The entropic utility objective is a particularly suitable ob-
jective function for end-to-end planning, satisfying well-
known convexity and recursive properties that we exploit
directly in this work to derive a risk-sensitive version of
the straight-line plan (Section 3.3). This makes it possi-



Epoch 0 Epoch 50 Epoch 100 Epoch 500 Epoch 1000

Figure 1: The evolution of trajectories navigated by RAPTOR (black) and a risk-neutral agent (blue) in a two-dimensional
Navigation domain subject to stochastic dynamics (note: multiple sample trajectories are shown simultaneously in each epoch).
The green bounding box at the center is a high-variance zone. The more an agent traverses into the box the higher the variability
in the next position at which the agent lands. The blue square on the bottom left is the starting position, while the red box at the
upper right corner shows the goal region. By epoch 1000, we clearly see that the risk-sensitive agent is able to get to the goal
region by avoiding the box and thus failure, while the risk-neutral agent does not.

ble to directly optimize risk in sequential decision-making
problems without relying explicitly on the Bellman princi-
ple, which often presents unique computational challenges
in other risk-aware MDP frameworks (Defourny, Ernst, and
Wehenkel 2008; Mannor and Tsitsiklis 2011).

While our resulting optimization of the straight-line plan
may be sub-optimal in stochastic environments, we prove
that the entropic utility of the straight-line plan lower bounds
that of the optimal entropic utility policy. Indeed, as evi-
denced by Figure 1, this lower bound is effective in finding
risk-averse behaviors in highly stochastic environments in a
computationally efficient manner. Overall, empirical evalu-
ations in Section 4 on two highly stochastic domains involv-
ing continuous action parameters — navigation (Faulwasser
and Findeisen 2009) and reservoir control (Yeh 1985) —
demonstrate that RAPTOR provides a reliable and efficient
end-to-end method for risk-sensitive planning in complex
MDPs.

While the present work focuses solely on risk-aware plan-
ning in MDPs, we envision its potential future use as an
efficient planning component in a risk-aware model-based
reinforcement learning framework. In this case, being risk-
aware could offer one way to avoid worst-case outcomes
when training a policy on rollouts from an imperfect model
of the environment, and deploying this policy to a real-world
setting.

2 Preliminaries
2.1 Markov Decision Processes
Sequential decision-making problems in this work are mod-
eled as continuous state-action Markov decision processes
(CSA-MDPs), defined as tuples 〈S,A, r, p, s0〉: S ⊆ Rn is
the state space,A ⊆ Rm is the action space, r : S ×A → R
is a bounded differentiable reward function, p : S × A ×
S → [0,∞) describes the non-linear dynamics of the sys-
tem, and s0 is the initial state. Note that CSA-MDPs are
naturally factored (Boutilier, Dean, and Hanks 1999), such
that the state components are mutually independent given
the previous state st and action at. A policy is a mapping
πt : S → A, while a plan is an explicit sequence of actions

a0,a1, . . . ,aH = a0:H starting from the given initial state
s0.

In the risk-neutral setting, the objective is to optimize the
expected return, the expected sum of future rewards accu-
mulated from some time instant h up to some terminal time
H when starting in some initial state sh:

V πh (sh) := Esh+1:H

[
H∑

t=h

r(st,at)

]
, (1)

where at = πt(st) for every t = h, h+1, . . . H . The optimal
policy π∗ of a risk-neutral agent attains the maximum in (1)
starting from state s0 at time h = 0, in which case we write
V ∗0 (s0) = V π

∗

0 (s0). Furthermore, the optimal value function
at every time instant h satisfies the Bellman equation

V ∗h (sh) = max
ah∈A

Esh+1

[
r(sh,ah) + V ∗h+1(sh+1)

]
, (2)

which allows both π∗ and V ∗0 to be computed iteratively
through time (Puterman 2014).

2.2 Entropic Risk-Sensitive MDPs
Risk sensitivity can be incorporated into the agent’s deci-
sion making by replacing the expectation operator Esh+1:H

[·]
with a non-linear utility function. In this paper, we consider
the entropic utility, which for β ∈ R and a random variable
X is defined as

U(X) :=
1

β
logE

[
eβX

]
. (3)

Taylor expansion of (3) obtains the mean-variance approxi-
mation

U(X) = E[X] +
β

2
Var[X] +O(β2). (4)

Now, interpreting variance as risk, β can be interpreted as
the overall level of risk aversion of the agent: β = 0 in-
duces risk-neutral behavior, while choosing β > 0 (β <
0) induces risk-seeking (risk-averse) behaviors. Thus for a
risk-averse agent, the entropic utility can provide protection
against high return variability.



Generalizing (1) to the risk-aware setting, define the util-
ity of a policy π from time h as

Uπh (sh) := Ush+1:H

(
H∑

t=h

r(st,at)

)
, (5)

where it is understood that the expectations are computed
w.r.t. the distribution of sh+1:H . Furthermore, due to the re-
cursive property of entropic utility (Osogami 2012; Dowson,
Morton, and Pagnoncelli 2020), the optimal utility satisfies
the Bellman equation

U∗h(sh) = max
ah∈A

Ush+1

(
r(sh,ah) + U∗h+1(sh+1)

)
. (6)

The entropic utility satisfies a number of other impor-
tant properties, including monotonicity, translation invari-
ance and convexity, that readily extend to the MDP setting.
We summarize the key properties used in this work below.
Lemma 1. For any random variables X,Y such that
P(X ≥ Y ) = 1, U(X) ≥ U(Y ). Furthermore, if c is de-
terministic, then U(X + c) = U(X) + c.

For detailed discussion and proofs of these and other
properties, we refer the reader to Föllmer and Schied (2002);
Maccheroni, Marinacci, and Rustichini (2006). Further-
more, the entropic utility is the only class of utility that sat-
isfies these properties and for which (5) is generally equal to
(6) (Kupper and Schachermayer 2009), making it a suitable
candidate for incorporating risk-awareness into end-to-end
planning.

3 Risk-Sensitive Planning
The goal of planning is to avoid the expensive computation
of (2) by optimizing for the sequence of actions directly. In
this section, we formally define our proposed method, RAP-
TOR, that computes a plan for the risk-sensitive analogue
(6). To this end, we employ stochastic computation graphs
and the reparameterization trick for the entropic utility.

3.1 Stochastic Computation Graphs
A stochastic computation graph (Schulman et al. 2015) is a
representation of a model that mixes deterministic computa-
tion with random variables drawn from distributions whose
parameters depend on the results of previous computations.
Its purpose is to define all dependencies between the vari-
ables of an acyclic generative model in order to allow the
development of efficient sampling and gradient estimators.

Formally, a stochastic computation graph G = (V,E) is a
directed acyclic graph having three disjoint sets of nodes: (i)
input nodes Θ that are directly observable (including data
or model parameters with respect to which we differenti-
ate); (ii) deterministic nodes D that define functions of their
parent nodes; and (iii) stochastic nodes S corresponding to
random variables, whose conditional distributions are speci-
fied by functions with parameters depending on their parent
nodes. For each edge (u, v) ∈ E, v is a child node whose
value or probability distribution depends on its parent node
u. The notation v ≺ w denotes that there exists a depen-
dency path from node v to node w in G. If the path only tra-
verses deterministic nodes, then we annotate the path with

s0 s1

a0 ε0

r0

s2

a1 ε1

r1

s3

a2 ε2

r2

Uε0:H
[∑H

t=0 rt

]

β

Figure 2: The stochastic computation graph of RAPTOR for
three decision steps. Following Schulman et al. (2015),
square and rounded nodes show deterministic and stochas-
tic nodes, respectively. The input nodes are drawn without
borders. Note that all state nodes st+1 (t = 0, . . . ) are deter-
ministic due to the reparameterization via εt. During the for-
ward pass, the inputs of the model along with a batch of sam-
ples of εt induce an empirical distribution (histogram) over∑H
t=0 r(st,at). From this, we compute the risk-sensitive ob-

jective function U , which is a symbolic function of the sam-
ples and their sufficient statistics. We show the flow of gra-
dients during backpropagation in red dotted lines.

the superscript D (v ≺D w), whereas a path that is subject
to stochasticity — due to traversing at least one stochastic
node — is denoted as v ≺S w.

In a stochastic computation graph, leaf nodes r jointly
define the symbolic objective function: J(θ) = Upθ (g(r)).
Here, J(θ) takes as input the nodes θ, and returns the util-
ity of a differentiable real-valued function g w.r.t. the prob-
ability distribution pθ induced by the computation graph.
In a CSA-MDP, the leaf nodes r = {rt}Ht=0 represent
the immediate rewards collected at each time instant, and
g(r) =

∑
t rt. Crucially, when there exists a path in the

graph such that θ ≺S J(θ), then J(θ) can no longer be opti-
mized directly in an end-to-end manner via automatic differ-
entiation (Griewank and Walther 2008), because the utility
cannot be computed in closed-form. To get around this diffi-
culty, we introduce the reparameterization trick for location-
scale families in the next subsection.

The model defined by RAPTOR naturally lends itself to
a stochastic computation graph, shown in Figure 2. Here,
the set of input nodes Θ includes the initial state s0, ac-
tions a0, . . .aH , and the risk aversion parameter β (3). The
stochastic transition st+1 = φ(st,at, εt) can be encoded
with three edges: st → st+1, at → st+1, and εt → st+1,
where εt is an i.i.d. random noise and φ(·) is a function
differentiable w.r.t. actions. Similarly, the reward function
r(st,at) is described by two edges: st → rt and at → rt.
From each rt node, an edge extends to the objective node
Uε0:H

(∑H
t=0 r(st,at)

)
. These edge dependencies in Fig-

ure 2 are drawn as solid black arrows.

3.2 Risk-Sensitive Planning by Backpropagation
The difficulty of our approach lies in computing the gra-
dients of J(θ). To perform this computation, the probabil-



ity density reparameterization trick is widely used (Kingma
and Welling 2014; Blundell et al. 2015; Figurnov, Mo-
hamed, and Mnih 2018; Schulman et al. 2015).

Suppose there is a stochastic node y ∼ p(·|parents(y))
in a stochastic computation graph G, whose distribution de-
pends on the input nodes θ (implicitly) and the parent nodes
of y. The reparameterization trick transforms y—which
blocks the gradient of the objective to propagate backwards
to parent(y) in the graph—into a deterministic differen-
tiable function φ(θ, ε)1, where ε ∼ p(ε) is an independent
random noise. Assuming that v ≺D y for all ancestral nodes
v of y, samples of y can be obtained by sampling ε and
applying the transformation φ(θ, ε). Hence, by transforming
all stochastic nodes in G into deterministic nodes in this way,
we can efficiently forward-sample the objective J(θ). Using
these samples, we can then compute sufficient statistics nec-
essary for the unbiased Monte Carlo estimation of the objec-
tive and its gradient. As a result, the gradient can now flow
through the deterministic node φ(θ, ε), allowing end-to-end
training of θ via backpropagation.

Specializing this idea to RAPTOR, note that at ≺S Uε(·)
holds for all t = 0, . . . ,H , which prevents us from optimiz-
ing the sequence of actions via backpropagation. To circum-
vent this difficulty, we note the following relations:

st+1 = φ(st,at, εt) (7)
rt = r(st,at) = r(φ(st−1,at−1, εt−1),at)

= r(φ(φ(φ(s0,a0, ε0), · · · ),at) (8)

where φ(·) is a deterministic differentiable (w.r.t. at) func-
tion and εt ∼ p(εt) is an independent random noise. In
(8), we represent the reward function at time t in a nested
form using the function φ(·). This allows us to reparame-
terize all the state nodes st starting from t = 1, resulting
in at ≺D Uε(·) for all t. Now, sampling ε = (ε0, . . . , εH)

from p(ε) =
∏H
t=0 p(εt) and applying (7) and (8) allows us

to obtain samples of
∑H
t=0 r(st,at). These samples are then

used to estimate sufficient statistics, including the mean in
(3) and the mean and variance in (4), and in turn the utility
objective and its gradient. In practice, RAPTOR uses Py-
Torch (Paszke et al. 2019) to symbolically differentiate the
Monte Carlo estimation of the entropic (or mean-variance)
utility via automatic differentiation.

In the context of Figure 2, the flow of gradients in back-
propagation is depicted using red dotted lines. As in Back-
propPlan, the only set of learnable parameters in our model
is the sequence of actions a0, . . .aH . In other words, we
optimize for a risk-sensitive straight-line plan in an end-
to-end manner via backpropagation. Although committing
to a fixed sequence of actions (i.e., straight-line plan) in a
stochastic environment can be sub-optimal, we now show
that the straight-line utility (denote it as J(a0:H)) lower
bounds the optimal utility when employing the entropic risk.

1For example, the location-scale family of distributions (such
as Normal, Gamma, Uniform, and Cauchy) is defined as y =
φ(θ, ε) = µθ + σθε, where µθ and σθ correspond to the loca-
tion and scale parameters of pθ , respectively (Bueno et al. 2019).
For the exponential distribution with the rate parameter λ, we use
φ(θ, ε) = 1/λ · ε where ε ∼ exp(1).

3.3 Risk-Sensitive Anticipatory Sampling
Optimizing J(a0:H) by backpropagation avoids the com-
putationally expensive iteration of (6) while outputs the
maximizing sequence a∗0:H of J(a0:H) as an optimal plan.
The optimal utility of this plan starting in state s0, denoted
uSL(s0) = J(a∗0:H), is called the straight-line utility

uSL(s0) := max
a0:H

Uε0:H

(
H∑

t=0

r(st,at)

)
. (9)

In general, (9) and (6) do not have the same values. In
essence, the issue here is stochasticity, which prevents the
open loop policy (plan) to respond to changes in the state
process that deviate significantly from their anticipated tra-
jectories. However, as in the risk-neutral planning setting
(Raghavan et al. 2017), we expect the risk-aware straight-
line utility to be a lower bound to the optimal utility. We
prove this for the first time in the risk-sensitive setting.
Theorem 1. The straight-line utility uSL(s0) is a lower
bound to the optimal utility, U∗0 (s0) ≥ uSL(s0).

Proof. Let ε be a random variable, A be an arbitrary set
and Xa = ga(ε) for a ∈ A and some functions ga.
Since maxa∈AXa ≥ Xb for every b ∈ A with prob-
ability one, and since Uε(·) is monotone, it follows that
Uε(maxa∈AXa) ≥ Uε(Xb). Since b is arbitrary, we have
Uε(maxa∈AXa) ≥ maxa∈A Uε(Xa).

Next, we write sh+1 = φ(sh,ah, εh) when the meaning
is clear from the context. Then, using the recursive property
and Lemma 1:

U∗0 (s0)

= max
a0

Uε0(r(s0,a0) + U∗1 (s1))

= max
a0

Uε0
(
r(s0,a0) + max

a1

Uε1(r(s1,a1) + U∗2 (s2))

)

≥ max
a0

max
a1

Uε0(r(s0,a0) + Uε1(r(s1,a1) + U∗2 (s2)))

= max
a0,a1

Uε0(Uε1(r(s0,a0) + r(s1,a1) + U∗2 (s2)))

= max
a0,a1

Uε0,ε1(r(s0,a0) + r(s1,a1) + U∗2 (s2))

≥ . . .
= max

a0:H

Uε0:H (r(s0,a0) + · · ·+ r(sH ,aH))

= uSL(s0).

This completes the proof.

4 Experiments
This section introduces two domains which are used to an-
alyze the performance of end-to-end risk-sensitive planning
by gradient descent, as well as, the performance metrics used
and the resultant performance.

4.1 Navigation
The navigation domain (Faulwasser and Findeisen 2009)
involves finding an optimal (shortest) path from a fixed
state to a fixed region in two-dimensional space, in which



states and actions are both continuous variables. The state
st = (st,x, st,y) is two-dimensional and represents the loca-
tion of the agent at each time t. The actions at = (at,x, at,y)
are also two-dimensional, and represent the coordinate dis-
placements of the agent at each time t, constrained by

−2 ≤ at,x, at,y ≤ 2.

The objective of the navigation domain is to reach the
goal region in a minimal number of time steps. For sim-
plicity, the reward is computed based on the Euclidean dis-
tance from the current state st to the center of the goal region
g = (gx, gy), at each time step:

r(st,at) =
√

(gx − st,x)2 + (gy − st,y)2.

As well, the navigation domain contains a high-variance
zone where noise is added to the resultant state st+1 based
on the amount that the agent crosses this zone. In addition,
for each next state trajectory not crossing the high variance
zone there is a small variance applied. Thus, the transition
function is

φ(st,at, εt) = st + at + 0.1 ∗ crossingt ∗ εt + 0.01 ∗ εt,
where εt follows the standard normal distribution and
crossingt is the length of the trajectory from st to st + at
that crosses the high variance zone.

4.2 Reservoir Control
Reservoir control (Yeh 1985) consists of multiple intercon-
nected water reservoirs, between which the flow of water is
controlled by dams. For each reservoir i, there exists a single
state si ∈ R denoting its water level, and there also exists
at least one connection to a downstream reservoir. An ac-
tion aij corresponds to the downstream flow from reservoir
i through its corresponding connection j. The actions are
constrained such that the total outflow of a reservoir does
not exceed the current water level of that reservoir, nor is the
outflow negative (water can only flow downstream), so that∑
j aij ∈ [0, si].
The objective of an agent is to ensure that the water level

in each reservoir is within a safe range [Ui, Li]. Thus, the
reward is calculated as follows:

costi =





−50(st,i − Ui), if st,i ≥ Ui
−0.005(Li − st,i), if st,i ≤ Li
0, otherwise

r(st,at) =
∑

i∈S
costi.

Note that the upper bound penalty is weighted more heav-
ily than the lower bound penalty, since we assume overflows
are more detrimental than low water levels. That is, over-
flows can cause flooding and significant damage to nearby
communities and hence less favorable than temporary wa-
ter shortages, which could be corrected fairly easily by, for
example, supplementing water from secondary sources.

The amount of rainfall adds stochasticity at each time
step, which is modelled at each time t as an exponentially-
distributed random variable εt with rate parameter λ. Now,

RaSLP SLP RaDRP DRP
−100

−80

−60

−40

−20

C
um

ul
at

iv
e 

R
ew

ar
d

Figure 3: The cumulative reward distributions for the nav-
igation domain showing extreme and mean values with in-
creasing risk sensitivity from left to right. The actions were
learned from the mean-variance approximation of entropic
risk.

the transition model for reservoir control becomes:

φ(st,at, εt) = st − atAd + atAu + εt,

where Ad is an adjacency matrix representing connections
from upstream to downstream reservoirs and Au is an adja-
cency matrix representing incoming connections from each
upstream reservoir:

Ad,ij =





1, if there is a connection from i to j, or
i = j and i has water flow out of the system

0, otherwise

Au,ij =

{
1, if there is a connection from j to i
0, otherwise

.

4.3 Discussion
Navigation Results In Figure 3, it can be seen that while
the risk-neutral plan (i.e., β = 0) has a higher expected cu-
mulative reward, the risk-sensitive plan leads to significantly
smaller variance in cumulative reward. This makes sense
intuitively, since in Figure 1, we see that the risk-neutral
actions—cutting directly through the high variance zone—
cause the earlier actions to be much closer to the goal region,
thereby increasing the overall reward. This, however, comes
at the expense of large variance and causes many of the risk-
neutral trajectories to fail in reaching the goal region, as cor-
roborated in Table 1. This high variability in both return and
state trajectories is mitigated by RAPTOR, which leads to
more predictable behavior.

β Misses (%)

0.0 92.29
−1.25 0.17
−2.5 0.09

Table 1: The percent of trajectory terminations outside of the
goal region for each β parameter. Results were gathered by
applying trained action sequences 300,000 times.

Reservoir Results In Figure 4, it can be seen that ex-
pected cumulative reward trends higher as risk-sensitivity
increases, while the opposite is true for cumulative reward



10 3 10 4 10 5 10 6 10 7
Beta

500

400

300

200

100

0 Cumulative Reward Distributions

Figure 4: The cumulative reward distributions for the reser-
voir domain with the horizontal lines indicating mean. Dis-
tributions are generated from the 275,000 applications of
trained action sequences with risk-sensitivity decreasing
from left to right. The actions were learned directly through
the entropic risk measure.

0 20 40
Time Step

10

20

30

40

50

W
at

er
 L

ev
el

Average Water Level

0 20 40
Time Step

10

5

0

R
ew

ar
d

Cumulative Expected Reward

Risk Neutral
Risk Averse

Figure 5: These results were gathered with 275,000 appli-
cations of the learned action sets. (left) represents the mean
water level for the reservoir system at each time step in the
horizon, averaged over the 275,000 applications. (right) rep-
resents the accumulated reward up to each time step, aver-
aged over the 275,000 applications.

β Overflows (%)

−10−7 0.67
−10−6 0.65
−10−5 0.54
−10−4 0.61
−10−3 0.17

Table 2: The average rate of overflows per time step, calcu-
lated by applying actions learned for each β 275,000 times.

variance. An intuitive explanation for this result is that, as
shown in Figure 5 and Figure 6, RAPTOR preemptively sets
the water level lower thereby increasing the expected re-
ward. Moreover, since the reward is zero when within the ac-
ceptable water level range, variance only increases when the
water level is outside these bounds. Therefore, as the risk-
sensitive actions have less overflows (Table 2), and over-
flows are the larger contributor to penalties, it is reasonable
that RAPTOR would have lower variance as well.

Risk Neutral Risk Averse

Time 10
Time 20
Time 30

Time 40
Time 49
Reservoir 1

Reservoir 2
Reservoir 3

Reservoir 4
Reservoir 5

Figure 6: The risk-neutral (left) and risk-sensitive actions
(right) were applied over 275,000 time horizons and the av-
erage water level at the corresponding time steps were plot-
ted. As can be seen, on average the risk-sensitive action set
preemptively keeps the water level lower to avoid overflows.

5 Conclusion and Future Work
In this paper, we have proposed RAPTOR, a scalable end-
to-end risk-aware planner based on gradient descent on a
risk-sensitive utility function. To this end, we have extended
BackpropPlan in order to accommodate stochastic transi-
tions, by representing the planning problem as a stochas-
tic computation graph and applying the reparameterization
trick. Critically, we have introduced the entropic utility as
objective function, which can be seamlessly embedded in
the graph as a symbolic objective. Then, risk-aware plan-
ning can be done end-to-end using an off-the-shelf auto-
matic differentiation tool (e.g., PyTorch) by exploiting sam-
ples of the utility and their sufficient statistics. Although
the resulting plan optimizes a straight-line utility, we have
shown that this utility lower bounds the optimal entropic
utility. The effectiveness of our approach has been demon-
strated through experiments on two highly stochastic do-
mains: Navigation and Reservoir.

As future work, we intend to consider scalable closed-
loop policies by following the deep reactive policy approach
(Bueno et al. 2019). Additionally, we note that extending our
current approach to handle hybrid (mixed continuous and
discrete) MDPs should be straightforward by using tricks
such as projected gradients. A final extension of our work
could investigate planning using other symbolic utility func-
tions in place of the entropic utility, such as CVaR (Chow
et al. 2015).

References
Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight Uncertainty in Neural Network. In ICML,
volume 37 of PMLR, 1613–1622. PMLR.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-



Theoretic Planning: Structural Assumptions and Computa-
tional Leverage. J. Artif. Int. Res. 11(1): 1–94. ISSN 1076-
9757.
Bueno, T. P.; de Barros, L. N.; Mauá, D. D.; and Sanner,
S. 2019. Deep reactive policies for planning in stochastic
nonlinear domains. In AAAI, volume 33, 7530–7537.
Chow, Y.; Tamar, A.; Mannor, S.; and Pavone, M. 2015.
Risk-Sensitive and Robust Decision-Making: a CVaR Op-
timization Approach. In NeurIPS.
Defourny, B.; Ernst, D.; and Wehenkel, L. 2008. Risk-aware
decision making and dynamic programming .
Dowson, O.; Morton, D. P.; and Pagnoncelli, B. K. 2020.
Multistage stochastic programs with the entropic risk mea-
sure.
Faria, J. 2018. Machine Learning Safety: An Overview.
Safety-critical Systems Symposium 2018 (SSS’18) .
Faulwasser, T.; and Findeisen, R. 2009. Nonlinear Model
Predictive Path-Following Control. Nonlinear Model Pre-
dictive Control - Towards New Challenging Applications
335–343. URL http://infoscience.epfl.ch/record/184946.
Figurnov, M.; Mohamed, S.; and Mnih, A. 2018. Implicit
Reparameterization Gradients. In NeurIPS, volume 31.
Föllmer, H.; and Schied, A. 2002. Convex measures of risk
and trading constraints. Finance and stochastics 6(4): 429–
447.
Griewank, A.; and Walther, A. 2008. Evaluating Deriva-
tives: Principles and Techniques of Algorithmic Differentia-
tion. USA: Society for Industrial and Applied Mathematics,
second edition. ISBN 0898716594.
Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Vari-
ational Bayes. In ICLR.
Kupper, M.; and Schachermayer, W. 2009. Representation
results for law invariant time consistent functions. Mathe-
matics and Financial Economics 2(3): 189–210.
Maccheroni, F.; Marinacci, M.; and Rustichini, A. 2006.
Ambiguity aversion, robustness, and the variational repre-
sentation of preferences. Econometrica 74(6): 1447–1498.
Mannor, S.; and Tsitsiklis, J. N. 2011. Mean-variance opti-
mization in Markov decision processes. In ICML, 177–184.
Moldovan, T. M. 2014. Safety, risk awareness and explo-
ration in reinforcement learning. Ph.D. thesis, University of
California, Berkeley.
Osogami, T. 2012. Robustness and risk-sensitivity in
Markov decision processes. NeurIPS 25: 233–241.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In NeurIPS, 8024–
8035.
Pereira, A.; and Thomas, C. 2020. Challenges of Ma-
chine Learning Applied to Safety-Critical Cyber-Physical

Systems. Machine Learning and Knowledge Extraction 2.
doi:10.3390/make2040031.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Raghavan, A.; Sanner, S.; Khardon, R.; Tadepalli, P.; and
Fern, A. 2017. Hindsight optimization for hybrid state and
action MDPs. In AAAI, volume 31.
Ruszczyński, A. 2010. Risk-averse dynamic programming
for Markov decision processes. Mathematical programming
125(2): 235–261.
Schulman, J.; Heess, N.; Weber, T.; and Abbeel, P. 2015.
Gradient Estimation Using Stochastic Computation Graphs.
In NeurIPS, 3528–3536.
Tieleman, T.; and Hinton, G. 2012. Lecture 6.5—RmsProp:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning.
Wu, G.; Say, B.; and Sanner, S. 2017. Scalable Planning with
Tensorflow for Hybrid Nonlinear Domains. In NeurIPS.
Yeh, W. W.-G. 1985. Reservoir management and operations
models: A state-of-the-art review. Water resources research
21(12): 1797–1818.


