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Abstract

Deep reinforcement learning has been shown to be able to
train deep neural networks to implement effective heuristic
functions that can be used with A* search to solve prob-
lems with large state spaces. However, these learned heuristic
functions are not guaranteed to be admissible. We introduce
approximately admissible conversion, an algorithm that can
convert any inadmissible heuristic function into a heuristic
function that is admissible in the vast majority of cases with
no domain-specific heuristic information. We apply approxi-
mately admissible conversion to heuristic functions parame-
terized by deep neural networks and show that these heuristic
functions can be used to find optimal solutions, or bounded
suboptimal solutions, even when doing a batched version of
A* search. We test our method on the 15-puzzle and 24-
puzzle and obtain a heuristic function that is empirically ad-
missible over 99.99% of the time and that finds optimal so-
lutions for 100% of all test configurations. To the best of our
knowledge, this is the first demonstration that approximately
admissible heuristics can be obtained using deep neural net-
works in a domain independent fashion.

Introduction
Path finding algorithms such as A* search (Hart, Nilsson,
and Raphael 1968) are used to find a path to a goal state
from any given starting state. These path finding algorithms
use heuristic functions to give an estimate of the cost re-
quired to reach the goal state from any given state. Using
heuristic functions, the amount of computation required to
find a path to the goal state can be drastically reduced. One
important aspect of heuristic functions is admissibility. A
heuristic function is said to be admissible if it never over-
estimates the cost of a shortest path. Given an admissible
heuristic function, A* search is guaranteed to find a short-
est path to the goal, also referred to as an optimal solution,
from any given state, provided that a path exists (Hart, Nils-
son, and Raphael 1968). Additionally, given an admissible
heuristic function, modified versions of A* search allow one
to find a path to the goal with bounded suboptimality (Pohl
1970, 1973; Harris 1974; Ghallab and Allard 1983; Valen-
zano et al. 2013). Having these theoretical guarantees for

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

real world applications would ensure that artificial intelli-
gence agents can solve problems in the most efficient way
possible, or close to the most efficient way possible, which
could significantly reduce the resources consumed by such
agents.

Obtaining an admissible heuristic function often requires
domain-specific knowledge. For example, pattern databases
(PDBs) (Culberson and Schaeffer 1998) have been suc-
cessful at finding optimal solutions to puzzles such as the
Rubik’s cube (Korf 1997), 15-puzzle, and 24-puzzle (Korf
and Felner 2002; Felner, Korf, and Hanan 2004). How-
ever, ensuring that these PDBs produce admissible heuris-
tics requires knowledge about how the puzzle pieces inter-
act. There has been previous research on using deep neu-
ral networks to learn heuristic functions (Chen and Wei
2011; Wang et al. 2019; Ferber, Helmert, and Hoffmann
2020) including the DeepCubeA algorithm (McAleer et al.
2019; Agostinelli et al. 2019) which used deep reinforce-
ment learning and weighted A* search (Pohl 1970) to solve
the aforementioned puzzles. However, the heuristic func-
tions produced by DeepCubeA are not admissible.

In this paper, we define an approximately admissible
heuristic function as one whose overestimation is bounded
by a reasonably small e where overestimation occurs in
100 − δ percent of cases, where δ is small. To convert an
inadmissible heuristic function to an approximately admis-
sible heuristic function, we first obtain a set of states that
is representative of the state space where each state in the
representative set is assigned an approximately admissible
heuristic value which is initially a trivially admissible value
of zero. We then iterate over two steps: (1) adjust the inad-
missible heuristic function using the approximately admissi-
ble heuristic values on the representative set; (2) update the
approximately admissible heuristic values on the represen-
tative set by performing A* search, without having to search
all the way to the goal, with the adjusted heuristic function.
These two steps are repeated until the average value of the
adjusted heuristic function stops increasing.

Since we are using deep neural networks, which are com-
plicated non-linear functions of the state, and a limited size
representative set, we cannot guarantee the approximately
admissible conditions how for all states. However, we em-
pirically show that e and δ are small and that we find a



shortest path for 100% of all test states. We also show that
we can relax the adjustment model to obtain an approxi-
mate additive bound (Harris 1974; Valenzano et al. 2013)
on the cost of a solution. This algorithm builds on the Deep-
CubeA algorithm; therefore, we call the resulting algorithm
DeepCubeA-Admissible (DeepCubeA2).

Related Work
Harris (1974) showed that heuristics that are approximately
admissible can still find optimal solutions, often much faster
than strictly admissible heuristics, while also being eas-
ier to construct. Valenzano et al. (2013) built on this work
by investigating heuristic functions bounded by an addi-
tive bound. Pearl and Kim (1982) investigated search al-
gorithms that explicitly take into account the risk of ter-
minating search with an approximately admissible heuristic
function. Given an admissible heuristic function, weighted
A* search (Pohl 1970) guarantees bounded suboptimal solu-
tions while potentially finding solutions much faster. These
methods, and others, are explored further in Pearl (1984).

Neural networks have been shown to be able to learn
informative heuristic functions. Ernandes and Gori (2004)
use supervised learning to train a neural network to learn a
heuristic function. Using an uneven error-function, they en-
courage the neural network to be admissible and were able
to find optimal solutions to the 15-puzzle in 50% of cases.
Samadi, Felner, and Schaeffer (2008) use a neural network
to combine multiple given heuristics into a single heuristic.
Arfaee, Zilles, and Holte (2011) and Chen and Wei (2011)
bootstrap from given heuristics to learn an improved heuris-
tic using a neural network and solve many of the test in-
stances optimally.

Preliminaries
Deep Approximate Value Iteration
Value iteration (Puterman and Shin 1978) is a dynamic pro-
gramming algorithm and a core reinforcement learning algo-
rithm (Bellman 1957; Bertsekas and Tsitsiklis 1996; Sutton
and Barto 1998) that iteratively improves a cost-to-go func-
tion J , that estimates the cost required to reach the goal state.
This cost-to-go function J can be readily used as a heuristic
for path finding algorithms.

In traditional value iteration, J takes the form of a lookup
table where the cost-to-go J(x) is stored in a table for all
possible states x. Value iteration loops through each state x
and computes an updated J ′(x) using the following equa-
tion:

J ′(x) = min
a

∑
x′

P a(x, x′)(ga(x, x′) + γJ(x′)) (1)

Here P a(x, x′) is the transition matrix representing the
probability of transitioning from state x to state x′ by taking
action a; ga(x, x′) is the transition cost, the cost associated
with transitioning from state x to x′ by taking action a; and
γ is the discount factor.

However, representing J as a lookup table is too memory
intensive for problems with large state spaces. Therefore, we

turn to approximate value iteration (Bertsekas and Tsitsiklis
1996) where J is represented as a parameterized function.
J is trained by minimizing the mean squared error between
J(x) and an updated J ′(x) obtained from Equation 1. We
choose to use a deep neural network (DNN) (Schmidhuber
2015) to represent J . This combination of deep neural net-
works and approximate value iteration is referred to as deep
approximate value iteration (DAVI). In the case of the 15-
puzzle and 24-puzzle, all transitions are deterministic and
all costs are 1. We set γ to 1 for all experiments.

A* Search
A* search (Hart, Nilsson, and Raphael 1968) is a search al-
gorithm that finds a path between the node associated with
the starting state xs and the node associated with the goal
state xg . A* search maintains a set, OPEN, from which it
iteratively removes and expands the node with the lowest
cost and a set, CLOSED, that contains nodes that have al-
ready been expanded. The cost of each node is f(x) =
g(x) + h(x), where g(x) is the path cost, the distance be-
tween xs and x, and h(x) is the heuristic, the estimated dis-
tance between x and xg . After a node is expanded, that node
is then added to CLOSED and its children that are not al-
ready in CLOSED are added to OPEN. If a child node x
is already in CLOSED, but a less costly path from xs to
x has been encountered, then x is removed from CLOSED
and added to OPEN with the updated path. The algorithm
starts with only the node associated with the starting state
in OPEN and terminates when the node associated with the
goal state is removed from OPEN.

Given an admissible heuristic, A* search is guaranteed
to find a shortest path to the goal. A heuristic function h is
admissible if h(x) ≤ h∗(x) for all possible states x, where
h∗(x) is the cost of a shortest path from x to the goal (Hart,
Nilsson, and Raphael 1968).

Methods
Approximately Admissible Conversion
While there are successful applications of approximate value
iteration using DNN approximators (Bertsekas and Tsitsik-
lis 1996; Agostinelli et al. 2019; Ferber, Helmert, and Hoff-
mann 2020), they do not address the admissibility of J ,
which will serve as the heuristic function. As shown in pre-
vious work (Agostinelli et al. 2019), the learned heuristic
overestimates the cost of a shortest path over 30% of the
time. We address this problem using a set of states that is
representative of the state space and that has an approxi-
mately admissible heuristic value assigned to each state. We
can compute the maximum amount that the learned heuris-
tic function will overestimate the approximately admissible
heuristic values on the representative set and subsequently
adjust the heuristic function so that it does not overestimate
any of these heuristic values. As we will show in the Re-
sults section, as the size of the representative set increases,
the empirical values for e and δ decrease. Each state in the
representative set is initially assigned a trivially admissible
heuristic value of zero. We then iterate over the following



Algorithm 1: Approximately Admissible Conver-
sion

Input:
h: Inadmissible heuristic function
X : Representative set
η: target increment for ha

Output:
h′: Converted approximately admissible heuristic

function
ha(x)← 0,∀x ∈ X
is solved(x)← False, ∀x ∈ X
while ∃x ∈ X | is solved(x) == False do

h′ ← adjust(ha, h,X )
for x ∈ X do

ha(x), is solved(x)← A∗(x, h′, ha(x) + η)

h′ ← adjust(ha, h,X )
Return h′

two steps to obtain an approximately admissible heuristic
function from an inadmissible one:

1. Adjust the inadmissible heuristic function so that it does
not overestimate any of the approximately admissible
heuristic values on the representative set.

2. Update the approximately admissible heuristic values of
the representative set using A* search with the adjusted
heuristic function.

This process is outlined in Algorithm 1. As we will show,
we do not have to wait for A* search to terminate in order to
update the approximately admissible heuristics on the repre-
sentative sets. We instead aim for these heuristics to increase
by a fixed value η.

Adjusting an Inadmissible Heuristic Assume we have
an inadmissible heuristic h and an approximately admissi-
ble heuristic ha where ha is only defined over a set of states
in a representative set X . We can then compute an adjusted
heuristic:

h′(x) = h(x)− omax (2)

where omax is the maximum overestimation of the ap-
proximately admissible heuristic ha:

omax = max
x∈X

(h(x)− ha(x)) (3)

Assuming all transition costs are positive, we know that
all path costs are greater than or equal to zero; therefore, the
upper bound of overestimation increases as h(x) becomes
larger. As a result, we can compute the maximum overesti-
mation based on the value of h(x). In practice, we subtract
h(x) by ocmax, where c is the smallest value in a user-defined
set of cutoffs C, such that c is greater than or equal to h(x).
The adjusted now becomes:

h′(x) = h(x)− ocmax (4)

where

ocmax = max
x∈X|h(x)≤c

(h(x)− ha(x)) (5)

In our experiments:

C = {0, k, 2k, ..., max
∀x∈X

h(x)} (6)

where k is a user-defined value. For all of our experiments
we set k to 1.

In some cases, using an admissible heuristic, or approxi-
mately admissible heuristic, to find an optimal solution may
to take too much time or use too much memory. This has led
to research on bounded suboptimal heuristic search (Pohl
1970, 1973; Ghallab and Allard 1983; Pearl and Kim 1982).
(Harris 1974) showed that one could bound the cost of a
solution found to be no greater than the cost of an opti-
mal path plus b provided that the heuristic function does
not overestimate the cost of an optimal path by more than
b. We can modify our approximately admissible heuristic to
be bounded 100−δ percent of the time by simply subtracting
b from ocmax for all c in C:

ocmax = max(ocmax − b, 0) (7)

This modification is performed only on the final adjusted
model obtained by approximately admissible conversion.

A* Search Update The approximately admissible heuris-
tic ha for the representative set is initially zero for all states.
Ideally, we would like ha to equal h∗ for every state in the
representative set. To approximate this, for each state in the
representative set, we perform A* search using the adjusted
heuristic h′. When A* search finds a solution for some state
x using a heuristic function that does not overestimate by
more than e, the cost of the path found is between h∗(x) and
h∗(x) + e (Harris 1974; Valenzano et al. 2013). However,
since h′ is being adjusted based on ha, h′ will initially be
zero for all states. Therefore, we cannot expect A* search
to find a solution for all states in the representative set in a
reasonable amount of time. Instead, for each state x, in X ,
we set a termination criteria based on how much ha(x) has
increased.

We set ha(x) to be the maximum cost of all nodes that
have been expanded. In Theorem 1, we prove that ha is
bounded by h∗ + e as long as h′ is bounded by h∗ + e. To
prove Theorem 1, we will need Lemma 1 and 2. The proof
to Lemma 1 may be found in Hart, Nilsson, and Raphael
(1968) as Lemma 1 and Lemma 2 is a modification of the
Corollary to that Lemma.

While we cannot guarantee that h′ ≤ h∗ + e will hold for
all states, Harris (1974) has shown that theoretical properties
can still hold in the majority of cases as long as the risk of
overestimation remains low. In the Results section, we show
that the percent of inadmissible heuristics δ is empirically as
low as 0.0019%.

Lemma 1. For any node x that has not been expanded and
for any optimal path P from xs to x, there exists a node x′
in OPEN on P with a path cost of g(x′) equal to the cost of
a shortest path from xs to x′.



Lemma 2. Assume positive transition costs, a heuristic
function that does not overestimate the cost of an optimal
path by more than e, and that A* search has not yet ter-
minated. Then, for any optimal path P from xs to a goal
node, there exists a node x′ on P in OPEN with f(x′) ≤
h∗(xs) + e.

Proof. By Lemma 1, there exists a node x′ in OPEN on P.
So, by definition, f(x′) ≤ g(x′)+h(x′) ≤ g(x′)+h∗(x′)+
e. By Lemma 2 g(x′) is the cost of a shortest path from
xs to x′, therefore, g(x′) + h∗(x′) = h∗(xs). Therefore,
f(x′) ≤ h∗(xs) + e

Now, we prove that, as long as A* search has not ter-
minated, every node expanded by A* search has a cost no
greater than h∗(xs) + e.

Theorem 1. Assume positive transition costs, a heuristic
function that does not overestimate the cost of an optimal
path by more than e, and that A* search has not yet termi-
nated. For start node xs, f(x) ≤ h∗(xs)+e for all expanded
nodes x.

Proof. Assume the contrary: there exists some expanded
node x′ such that f(x′) > h∗(xs) + e and x′ is not the goal.
We know that when x′ was popped from OPEN, f(x′) ≤
f(x) for all x in OPEN. Let P be an optimal path from the
start node to the goal node. From Lemma 2 we know that
when x was obtained from OPEN, there existed a node y in
OPEN on path P such that f(y) ≤ h∗(xs) + e. Therefore,
f(x′) ≤ f(y) ≤ h∗(xs) + e. This leads to a contradiction
since we assumed f(x′) > h∗(xs) + e.

Batch A* Search with Shortest Path Guarantees
Graphics processing units (GPUs) are often used for DNNs
due to the drastic speedup they provide through parallelism.
However, classical A* search does not fully use the parallel
computing capabilities of GPUs because classical A* search
only expands one node at a time. To address this, a batched
version of A* search was proposed (Agostinelli et al. 2019)
where N nodes are removed from OPEN every iteration and
where batch A* search terminates if one of those N nodes
is a goal node. However, this also does not guarantee that an
optimal solution is found because the path to the goal node
is not guaranteed to be the shortest path.

We modify batch A* search to ensure that it will return
a bounded suboptimal solution provided a bounded subop-
timal heuristic. The modifications are as follows: if a goal
node is encountered, we save this goal node and continue
search and only terminate when the saved goal node has a
cost less than or equal to the first node removed from OPEN
or if there are no more nodes in OPEN. If we have already
saved a goal node and encounter a new goal node, we re-
place the saved goal node with the new goal node if it has
a lower cost than the saved goal node. We prove that this
will guarantee that a bounded suboptimal path is found in
Theorem 2.

Theorem 2. Assume positive transition costs, a heuristic
function that does not overestimate the cost of an optimal
path by more than e, and that batch A* search has saved

a goal node. There are two cases in which batch A* search
terminates: OPEN is empty or when the saved goal node
has a cost less than or equal to the first node removed from
OPEN. Termination in either of these two cases guarantees
that the cost of the path to the saved goal node is subopti-
mally bounded by e.

Proof.

Case 1. OPEN is empty. If OPEN is empty, then there are
no more nodes left to expand, meaning we have exhausted
all possible paths from the start node. Since we update the
saved goal node to be the lowest cost node of all goal nodes
encountered, the path to the saved goal must be an optimal
path.

Case 2. The saved goal node, xg , has a cost less than or
equal to the first node removed from OPEN, x′. That is,
f(xg) ≤ f(x′). Since we know that x′ has the lowest cost
of all nodes in OPEN, we know that f(xg) ≤ f(x) for all
x in OPEN. If xg is on a shortest path, then, by definition,
its path cost is suboptimally bounded by e. If xg is not on a
shortest path, then, because we save the goal node with the
lowest path cost, we must have yet to remove a goal node on
a shortest path from OPEN. Therefore, by Lemma 1, there
must be a node y in OPEN on a shortest path. Since our
heuristic function overestimates the cost of an optimal path
by no more than e, then y will have a cost of no more than
h∗(xs) + e. Therefore, f(xg) ≤ f(y) ≤ h∗(xs) + e. There-
fore, the cost of the path to the saved node xg is suboptimally
bounded by e.

Training
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Figure 1: Visualizations of a random state (left) and the goal
state (right) for the 24-puzzle.

We train DeepCubeA2 on the 15-puzzle and the 24-puzzle
(shown in Figure 1), two popular sliding tile puzzles. Moves
are made by swapping the blank square with any square hori-
zontally or vertically adjacent to it. The representation given
to the network is a one-hot encoding that specifies the posi-
tion of each square.

We generate training data by scrambling the goal state be-
tween 0 and 1,000 times. We attempt to solve each generated
state using greedy best-first search with the cost-to-go func-
tion J as the heuristic. Each state encountered during greedy
best-first search is also added to the training set. We train J
using DAVI. J is initialized to be zero for all states and is
used to compute an updated value J ′ using Equation 1. J ′ is



learned by a DNN. J is updated to be J ′ every 1,000 itera-
tions.

The DNN has two hidden layers followed by four resid-
ual blocks (He et al. 2016). The size of the first two hid-
den layers is 5,000 and 1,000, respectively. Each residual
block has two layers of size 1,000. We train with a batch size
of 10,000 and optimize the network using ADAM (Kingma
and Ba 2015) with a constant learning rate of 0.001. No reg-
ularization is used. We train for 200,000 iterations for the
15-puzzle and 280,000 iterations for the 24-puzzle. The net-
work is built using the PyTorch software package. (Paszke
et al. 2017).

Results
To compare the results of DeepCubeA2 to the cost of an op-
timal path, we rely on shortest path solvers built for the 15-
puzzle and 24-puzzle. Specifically, we use pattern databases
(PDBs) (Culberson and Schaeffer 1998) developed by (Fel-
ner, Korf, and Hanan 2004). These PDBs use lookup ta-
bles to compute a heuristic and use that heuristic for iter-
ative deepening A* search (IDA*) (Korf 1985). While we
do include results obtained by pattern databases in Table
1 for transparency, we would like to note their purpose is
mainly for verifying the cost of an optimal path and that
a direct comparison cannot be made between DeepCubeA2
and PDBs as their applicability and scope vary significantly.
Furthermore, the PDBs we use take advantage of domain
specific knowledge to speed up lookup table access.

Performance of Approximately Admissible
Conversion
We run approximately admissible conversion for the DNN
trained on the 15-puzzle and 24-puzzle. We have one mil-
lion examples in the representative set obtained by scram-
bling the goal state between 0 and 1,000 times. We set the
lower bound increment η in Algorithm 1 to 1.0. To speed
up performance, we did not update the lower bound of all
examples for every iteration, instead, we used the difference
between ha(x) and the output of h′(x) for all unsolved states
x to identify which states were “easiest” to update, where a
smaller difference is considered easier. We updated at least
10% of unsolved states in each iteration. We ran A* search
on these states simultaneously using four NVIDIA Titan V
GPUs to compute h′. To ensure high GPU utilization, we
terminated A* search for all states once we have fulfilled
the termination criteria for 50% of the states. We stopped
conversion when the average value of h′ on the representa-
tive set stopped increasing. Approximately admissible con-
version took 3.4 hours for the 15-puzzle and 15 hours for the
24-puzzle.

In order to determine the effectiveness of approximately
admissible conversion, we need to determine how often the
heuristic function overestimates the cost of an optimal path
before and after conversion. PDBs are very effective at solv-
ing the 15-puzzle, however, PDBs are much more time con-
suming for the 24-puzzle, with some states taking weeks to
solve. Therefore, we focus on the 15-puzzle. We create a
test set of one million states for the 15-puzzle by randomly

scrambling the goal state between 0 and 1,000 times.
We first investigate the effect that the size of the repre-

sentative set has on the admissibility of the adjusted heuris-
tic function. We create a representative set of size 103, 104,
and 105. We then empirically evaluate the converted heuris-
tic function on the test set. Figure 2 shows how the maxi-
mum overestimation, e, percent inadmissible, δ, and the av-
erage heuristic value changes as a function of each step of
approximately admissible conversion. The figure shows that
the both e and δ decrease significantly as the size of the rep-
resentative set is increased, while the average heuristic value
decreases only slightly.

We then evaluate the converted heuristic function when
using the entire representative set of size 106. A compari-
son of the heuristic function before and after approximately
admissible conversion can be seen in Figure 3. Before con-
version, the heuristic function is inadmissible 71.37% of the
time, with the largest overestimation being 8.28. After con-
version, the heuristic function is inadmissible only 0.0019%
of the time (19 out of one million examples), with the largest
overestimation being 0.62. This is relatively small consid-
ering that the diameter of the 15-puzzle is 80 (Brüngger
et al. 1999; Korf 2008). Empirically, we can see that ap-
proximately admissible conversion creates a heuristic func-
tion that is admissible 100 − δ percent of the time where
δ = 0.0019.
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Figure 2: How various aspects of the heuristic function
changes during approximately admissible conversion. Each
line represents a different size for the representative set.

Solving with Batch A* Search
After converting the heuristic using approximately admissi-
ble conversion, we now test how well batch A* search per-
forms when using the converted heuristic. We use a test set
of 500 states from (Agostinelli et al. 2019) that have been
generated by randomly scrambling the goal state between
1,000 and 10,000 times. We test batch A* search using batch
sizes of 1, 10, 100, and 1,000. In addition, we vary the sub-
optimal bound between zero and the maximum overestima-



Puzzle Solver Len Worst Subopt % Opt Nodes Secs Nodes/Sec

15-Puzzle
PDBs 52.02 0 100.0% 3.22E+04 0.002 1.45E+07
DeepCubeA 52.03 2 99.4% 3.85E+06 10.28 3.93E+05
DeepCubeA2 52.02 0 100.0% 5.76E+05 2.40 2.38E+05

24-Puzzle
PDBs 89.41 0 100.0% 8.19E+10 4,239.54 1.91E+07
DeepCubeA 89.49 6 96.98% 6.44E+06 19.33 3.34E+05
DeepCubeA2 89.41 0 100.0% 2.92E+07 145.03 2.21E+05

Table 1: Comparison of DeepCubeA and DeepCubeA2. DeepCubeA was not able to find optimal solutions for all test states,
however, DeepCubeA2 is able to find optimal solutions for 100% of the test states.

(a) Before approximately
admissible conversion

(b) After approximately ad-
missible conversion

Figure 3: The plots show the output of the learned heuristic
function compared to the cost of an optimal path on a test
set of one million examples for the 15-puzzle. Any heuristic
values above the green line are inadmissible. Before approx-
imately admissible conversion, the heuristic is inadmissible
71.37% of the time. After approximately admissible conver-
sion, the heuristic is inadmissible only 0.0019% of the time
(19 out of one million).

tion encountered on the representative set during the final
iteration of approximately admissible conversion. This max-
imum overestimation on the representative set was 9.02 for
the 15-puzzle and 19.42 for the 24-puzzle.

Figures 4 and 5 show the performance of batch A* search
on the 15-puzzle and 24-puzzle, respectively. The plots show
that batch A* search is able to solve 100% of all test states
optimally under multiple conditions. A larger batch size
leads to more optimal solutions and expands significantly
more nodes. Furthermore, batch A* search remains consis-
tent with the theoretical guarantees provided in Theorem 2,
that is, all solutions are suboptimally bounded by b. When
keeping the batch size the same, the most extreme differ-
ence in optimal solutions between a large b and a small b is
over 30% for both the 15-puzzle and the 24-puzzle.

Finally, we compare the results from DeepCubeA2 to
the results of DeepCubeA in Table 1. The table contains
the 15-puzzle for the case of using a batch size of 1,000
and a suboptimal bound b of 0 and the 24-puzzle we show
the case of using a batch size of 1,000 and suboptimal
bound b of 2. The table shows that DeepCubeA2 consis-
tently outperforms DeepCubeA by finding shorter solutions.
While DeepCubeA did not find optimal paths to all solu-
tions, we see that DeepCubeA2 is able to do so 100% of
the time. In Figure 5, we see that even for parameter set-
tings where DeepCubeA2 is not as optimal as DeepCubeA,

DeepCubeA2 is still able to achieve a better suboptimality
bound.

Discussion
We introduce DeepCubeA2, an algorithm that learns a
heuristic function using deep reinforcement learning and
then converts that heuristic function to an approximately
admissible heuristic function. DeepCubeA2 accomplishes
this using approximately admissible conversion, an algo-
rithm that can take any inadmissible heuristic function and
convert it to an approximately admissible heuristic func-
tion. Furthermore, the resulting approximately admissible
heuristic function can easily be relaxed to be a bounded in-
admissible heuristic function for bounded suboptimal solu-
tions and potentially less resource usage. The heuristic pro-
duced by DeepCubeA2 has been empirically shown to be
almost always admissible with a relatively small overesti-
mation in the cases when it is inadmissible. Furthermore,
we have shown that one can do batch A* search to take ad-
vantage of parallelism provided by GPUs while maintain-
ing theoretical guarantees. Finally, we test this method on
the 15-puzzle and 24-puzzle and show that the theoretical
guarantees hold in practice and that DeepCubeA2 can solve
100% of test states optimally. It is possible that improvement
can be made to the approximately admissible heuristic using
lookahead search when computing the heuristic value (Lam
et al. 2017). This could be particularly useful in cases where
the learned heuristic function is very inaccurate.

Many current real-world problems are posed as path find-
ing tasks. For example, robotic manipulation tasks such
as key insertion (Florensa et al. 2017), object manipula-
tion (Finn and Levine 2017; Lanier, McAleer, and Baldi
2019), and object assembly (Gullapalli, Franklin, and Ben-
brahim 1994; Levine et al. 2016) are often posed as pathfind-
ing tasks. Furthermore, DeepCubeA has been used to solve
problems in quantum computing (Zhang et al. 2020) and
cryptography (Jin and Kim 2020). Solving real-world prob-
lems using an admissible heuristic function would ensure
that tasks are completed in the most cost-effective way
possible, which could significantly decrease the resources
consumed by artificial intelligence agents. In this paper,
we addressed the issue of learning an admissible heuris-
tic using deep neural networks (DNNs) in deterministic
fully-observable environments in which the goal state is
known and a model is provided. Research on model learn-
ing (Racanière et al. 2017; Kaiser et al. 2019) suggests that



this work can be extended to settings where the model must
be approximated using deep learning. This work could also
be extended to modified versions of A* search, such as
anytime A* search (Likhachev, Gordon, and Thrun 2003),
multi-heuristic A* search (Aine et al. 2016), and AQ* search
(Agostinelli et al. 2021).
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Figure 4: Effect of batch size and suboptimal bound param-
eter b on solving performance for the 15-puzzle when using
batch A* search. The worst case suboptimal paths found by
batch A* search are all bounded by the suboptimal bound b.
There are multiple parameter settings that result in batch A*
search always finding a shortest path.



1 10 100 1000
Batch size

20
14

8
2

0
Su

bo
pt

im
al

 B
ou

nd

9.88 29.23 68.95 93.55

14.11 30.85 64.31 91.53

53.63 57.06 68.15 91.13

100.0 100.0

(a) Percent optimal

1 10 100 1000
Batch size

20
14

8
2

0
Su

bo
pt

im
al

 B
ou

nd

93.55 91.71 90.1 89.54

92.65 91.58 90.25 89.58

90.41 90.33 90.08 89.59

89.41 89.41

(b) Average solution length

1 10 100 1000
Batch size

20
14

8
2

0
Su

bo
pt

im
al

 B
ou

nd

10.0 10.0 6.0 2.0

8.0 8.0 6.0 4.0

4.0 4.0 4.0 2.0

0.0 0.0

(c) Maximum path cost over optimal path
cost

1 10 100 1000
Batch size

20
14

8
2

0
Su

bo
pt

im
al

 B
ou

nd

882 3,763 34,699 333,844

4,164 6,668 36,210 335,183

42,550 44,187 68,307 352,529

6,417,278 29,216,552

(d) Number of nodes generated

Figure 5: Effect of batch size and suboptimality bound b on
solving performance for the 24-puzzle when using batch A*
search. The worst case suboptimal paths found by batch A*
search are all bounded by the suboptimal bound b. There are
multiple parameter settings that result in batch A* search al-
ways finding a shortest path. The blank squares result from
the parameter settings using too much time or too much
memory.
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