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Abstract

We consider the crucial task of estimating an expert’s dis-
count factor in Inverse Reinforcement Learning (IRL) to fa-
cilitate a better synthesis towards the resulting optimal policy.
Existing IRL algorithms have significantly overlooked the vi-
tal need to estimate the discount factor, experimental studies
and theoretical intuitions show variability of the learnt reward
function as the discount factor changes. In this work, we adapt
the model-based maximum entropy IRL framework and opti-
mize a utility-based softmax likelihood function via a feature-
based gradient update to jointly learn the discount factor and
reward. To test our approach, we utilize behavioral data from
three Markov decision process (MDP) environments, namely,
Grid-World, Mountain-Car Driving and Object-World. Ex-
perimental and numerical studies show that our approach is
viable for the simultaneous estimation of the discount factor
and reward function in IRL.

Introduction

Inverse reinforcement learning (IRL) primarily explains ob-
served behavior in terms of a reward function (Ng and Rus-
sell 2000; Ziebart et al. 2008; Neu and Szepesvari 2012;
Ramachandran and Amir 2007; Wulfmeier, Ondruska, and
Posner 2015). An implicit assumption in IRL is that the
discount factor is known; however, experimental studies
and theoretical intuitions show variability of learnt re-
wards as the discount factor changes. Thus, it is crucial
to estimate both the discount factor and reward function
in IRL. Although a preponderance of IRL literature (Ng
and Russell 2000; Ziebart et al. 2008; Boularias, Kober,
and Peters 2011; Wulfmeier, Ondruska, and Posner 2015;
Neu and Szepesvari 2012; Ramachandran and Amir 2007;
Zheng, Liu, and Ni 2014; Vroman 2014; Suay et al. 2016;
Choi and Kim 2011) have often assumed the discount factor
to be known or arbitrarily chosen, we posit that it is critical
to infer the discount factor as part of the learning process
in IRL. Besides, IRL is an ill-posed problem, thus, the pio-
neering mathematical formalism seek to maximize the sum
of differences between quality of optimal and second-best
actions (Ng and Russell 2000). This would penalize single-
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step deviations from the optimal policy by making such de-
viations as costly as possible. However, maximum entropy
IRL (Ziebart et al. 2008) employed a probabilistic approach
to address ambiguity in IRL.

Typical IRL solution methods can be categorized into
model-based and model-free approaches. By model-based,
we mean that the IRL algorithm has a known model of
the environment, i.e., states transition dynamics (P) while
model-free assumes no model of the environment is known a
priori. Some model-free approaches (Boularias, Kober, and
Peters 2011; Finn, Levine, and Abbeel 2016) heavily rely on
the Kullback-Leibler (KL) divergence measure to estimate
the partition function which is accurately computed in the
model-based approaches. In model-based RL, the discount
factor “shapes” the planning horizon which can be short (y
closer to 0) or long (v closer to 1) depending on the pref-
erences of the decision-maker; a policy applied to a longer
horizon might not be applicable in a shorter horizon given
the same model of the environment in both horizons. From
experimental studies, the use of an arbitrary discount factor
in IRL could lead to over- or under-estimation of the value
function as well as a different optimal policy when the learnt
reward function is optimized in a Markov decision process
environment. Thus, it is crucial and non-trivial to estimate
the discount factor as part of the IRL problem.

In order to impose some structure on the reward solu-
tion space towards managing complexity, a linear approxi-
mation in the state features have often been used (Ng and
Russell 2000; Ziebart et al. 2008; Neu and Szepesvari 2012;
Vroman 2014) and we follow such linear approximation in
this work. In this work, an agent (or expert) is one whose
reward function (R 4) and discount factor (74) the learner
(L) seeks to learn. In other words, we seek to estimate the
reward function (Ry,) for the learner as well as the discount
factor (1) given the behaviour (£) of an agent (A).

Motivating Example

Consider a hypothetical scenario wherein an agent in state
S1 is making decisions and could get a reward of either 1
in state S4 or 10 in state S5. This scenario is modelled as
a 5-state finite-horizon and deterministic MDP of Figure 1
and we show that the forward and corresponding inverse so-



lutions differ as we change the discount factor as seen in Ta-
ble 1 using the maximum entropy framework (Ziebart et al.
2008). The actual reward of the agent is shown in the second
column of Table 1, based on a discount factor of v4 = 0.35,
the optimal policy (behavioural data) of the agent is shown
in the third column of Table 1. Given this data, the maximum
entropy algorithm (Ziebart et al. 2008) employs a discount
factor of 0.9 to learn the reward function and the correspond-
ing optimal policy in the fourth and fifth columns, respec-
tively of Table 1. Although based on RL formalism, state S4
has a lower reward when compared to state S5 and a far-
sighted agent would induce a policy that gravitates towards
state S5 as the terminal state. However, if a myopic human
who prefers the reward in state S4 (based on desiderata, e.g.,
shorter path) would induce a policy which is not the same as
the far-sighted agent. More so, given the behavioural data,
one can better understand the agent’s motivation via the dis-
count factor. Seemingly, the results show how critical the
discount factor is in IRL and RL in general'.

rl=0 2=-8 r3=0

=1 r5=10

Figure 1: MDP with 5 states.

Table 1: The optimal policies (originally 7*, learnt as 7*)
differed when the discount factor of agent is 0.35 while 0.9
was assumed in the learning; different optimal actions in
state S1.

Original ((7 = 0.35)) | Learnt (3 = 0.9)
State | Reward * Reward T
Sl 0 Qy 0.1 a9
SQ -8 as 0.5 as
53 0 as 5.0 as
Sy 1 - -0.1 -
Ss 10 - 9.9 -

Significance of Discount Factor Learning

For a trajectory (7) with horizon length 7', the value function
of a policy (m), V™ (s;) = E™[3;_, 7" R(s:)]. For a given
state (s), the discount factor () is not just a scale parameter
which “shifts” the reward function R(s), in fact, it deeply af-
fects the resulting optimal policy (7*). To obtain 7%, we seek
the action (a) that maximizes V'™ (s) for each state (s) or the
action (a) that maximizes Q7 (s, a) (Sutton and Barto 2018).
It is known that v < 1, ensures the return (sum of rewards)
converges when 7' = o0, i.e., infinite horizon (Sutton and
Barto 2018). Also, in both finite and infinite horizons, the

'See Appendix for another example.

discount factor? plays an important role which is telling us
how much a future reward is worth at the current time step
().

There are two ways to look at the intuition behind the need
for discount factor estimation in IRL. Suppose we generate
an agent’s policy - m4 (empirical data) using a specific dis-
count factor (v4), existing IRL literature assume that dur-
ing the learning m4 was generated by some discount factor
(vz)- However, if y4 # 1, the empirical data (74) would
not necessarily be the same for both discount factors. Thus,
computational accuracy of learning is affected.

The other perspective is that IRL is originally concerned
with explaining human behavior in terms of a reward func-
tion (Ng and Russell 2000; Ziebart et al. 2008). It is known
that decisions made by humans are implicitly determined
by the choice of discount factor (Knox and Stone 2012;
Klapproth 2008). For instance, in an MDP context, a hu-
man decision maker who is considered myopic would uti-
lize an optimal policy based on a small discount factor say
v = 0.25, however, RL community usually set v > 0.9
to extract an optimal policy. Thus, given a behavioral data,
it becomes crucial to infer the discount factor associated
with such data to enhance a “better” explanation. Besides, in
economics literature (Chabris, Laibson, and Schuldt 2010;
Benzion, Rapoport, and Yagil 1989), the role of discounting
has been investigated. Benzion, Rapoport, and Yagil (1989)
inferred the discount rate in a qualitative manner given
some behavioral data, however, the ‘reward function’ was
assumed to be known which contrasts the IRL framework.
To the best of our knowledge, this is the first work which
attempts to estimate both the reward and discount factor in
the IRL framework.

The main contributions of this work are: (i) Estimation of
discount factor and reward in IRL in a model-based manner,
and (ii) Identification of additional source of ambiguity in
IRL given the softmax likelihood function.

Markov Decision Process

Markov decision process (MDP) comprises a tuple -
{S, A, P,R,~}; wherein S : finite set of states, A : finite
set of actions, P : states transition probability matrix, R: re-
ward function and +y : discount factor. A policy is a function
7w :S — A (or a distribution 7(a|s)). An episode (7) is a
sequence of state-action pairs with horizon length (7'), i.e.,
7 ={(s0,a0), ($1,01), ..., (87, ar) }. The utility (or return)
of a trajectory (U(7)) = Z?:o Y'R(s¢,at) V sgap € T
Given a Markov decision process (MDP), reinforcement
learning (RL) (Sutton and Barto 2018) is employed to obtain
an optimal policy (7*) which maximizes the expected sum
of discounted rewards, i.e., expected utility. Hence, given 7*
would imply that V™ (s) = V*(s) = sup,V™(s) for all
s € S. Similarly, the optimal action-value function is de-
fined as Q™ (s,a) = Q*(s,a) = supQ™ (s, a).

2y € (0,1). We do not consider the boundary values of 0 and
1 as discounting. If v = 0, this transforms the RL problem to a
supervised learning one. On the other hand, if v = 1, it is simply a
total sum of rewards.



Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) originally seeks to de-
termine the reward function for an underlying Markov deci-
sion process (Ng and Russell 2000; Ziebart et al. 2008) and
provisions a sub-result for apprenticeship learning (Abbeel
and Ng 2004; Neu and Szepesvari 2012). Essentially, an
IRL algorithm has as input an MDP without rewards (R),
i.e.,{MDP\R} and demonstrations (or trajectories) as well
as (often) the features or basis function — ¢. The reward
function is often linearly parameterized with the basis func-
tion — ¢ (Ng and Russell 2000; Ziebart et al. 2008; Vroman
2014). If the reward function is parameterized by 6 (6 is also
known as the reward weights):

Ry(s) = 07¢(s) €))

where ¢ is the reward basis, then the IRL problem becomes
finding 6* given the demonstration data. Inverse RL (IRL) is
closely related with the general inverse optimization litera-
ture (Aswani, Shen, and Siddiq 2018; Esfahani et al. 2018)
in which given a parametric objective function and data, de-
termine what parameter realizations closely match the given
data by minimizing an empirical loss function.

Maximum Entropy IRL

IRL, as typified with inverse optimization problems, is an
ill-posed problem (it does not satisfy the Hadamard’s well-
posed problem definition). In the past two decades, there
is a known ambiguity problem in IRL wherein (i) multi-
ple reward functions can satisfy the same optimal policy,
and (ii) multiple policies can give rise to the same set of
demonstration samples. For instance, a fundamental char-
acterization of optimality in the pioneering mathematical
IRL framework (Ng and Russell 2000) is (P** — P*)(I —
yP%*)~LR > 0; this inequality makes apparent the degen-
erate case R = 0 as being optimal for any demonstration set.
To address this ambiguity in IRL, several authors have pro-
posed mitigation approaches including use of regularization
and probabilistic solution methods. A probabilistic approach
is maximum entropy IRL (Ziebart et al. 2008) based on the
principle of maximum entropy to match distributions over
behavior with data-driven constraints. The feature expecta-
tion constraints in the maximum entropy framework (Ziebart
et al. 2008) propels the resulting distribution which increases
conformity of the maximum likelihood of the trajectories.

Problem definition

Given a finite-horizon MDP without discount factor () and
reward (R), i.e., {MDP\{R,y}} and a set of trajectories,
§ = {(r1,72,...,Tig|) }» the question arises as to how we
would jointly estimate discount factor and reward. To facil-
itate a solution, we adapt the maximum entropy IRL frame-
work (Ziebart et al. 2008) by maximizing entropy subjected
to discounted feature expectation constraints which trans-
formed to a maximum likelihood estimation of a softmax
distribution model.

Softmax Likelihood with Utility Function

For clarity, our approach is different from the use of expo-
nential utility which has been proposed in some RL and
IRL literature to capture risk sensitivity of the decision
maker (Mihatsch and Neuneier 2002; Singh et al. 2018).
Nonetheless, to the best of our knowledge, no existing lit-
erature has learnt to maximize the likelihood function as a
normalized exponential of utility to learn both the reward
and discount factor.

Theoretically, we show that the popular maximum en-
tropy framework (Ziebart et al. 2008) subjected to dis-
counted feature constraints results in the probability of visit-
ing a trajectory (7) as being proportional to the exponential
of the utility of the trajectory (U(7)). To derive the expo-
nential of utility function, we maximize entropy as in max-
imum entropy IRL (Ziebart et al. 2008) but subject to dis-
counted feature constraints (we note here that this type of
constraint has been utilized for an infinite-horizon IRL prob-
lem (Bloem and Bambos 2014)). In view of the feature ex-
pectation matching constraint: Objective

—> p(r)logp(r

TEE
Constraints (subject to:)

il il

S Ap(r)é(rit) = Ell S Aot
ret t=0 ret t=0
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TEE
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where ¢(7;t) is the feature observed at the ¢-th trans-
action along trajectory 7 and p(7) is the probabil-
ity of trajectory 7. Following a Lagrangian relax-
ation and solution of a first-order optimality equation:

p(r) = eXitaVeTé(mtFw By axioms of probability:
Sreep(r) = YoegeveEon 60— 1. Hence,

p(T) = %ezigo 7'07é(7:) Taking out the normalizing con-
stant - Z, we invoke the proportionality relation as follows:
p(7) o eXiDo ' OTé(rit) — (U(T)

The probability of visiting a trajectory is directly propor-
tional to exponential of the utility of that episode. Thus, the
objective is to find #* and +* that maximizes the likelihood

of demonstration set ().

Il tgT .
1 Zveg 20 Y 0T B(Tst)
0*,v* = arg max 4 H 7 ()

Take the log of the likelihood function in Equation (2), Equa-
tion (3) follows as:

7]

1(6,7;€) = mzzyfenprt logZ  (3)

T€€ t=0



Explicitly, we define the constraints on the discount factor
as v > 0 and v < 1. With a penalization (A is a penalty
to enforce boundary conditions on discount factor) of the
constraints, we obtain the following derivatives with respect
to 6 and ~y, respectively:

G ZZV¢ (731) 227

T€E t=0 seS t=0

(5¢10,7)9(st)

4)

[l

Vo = mZZwt LG

Te€ t=0
||

=D D Y TIP(sel0, )07 S(se) + A (5)

seg t=0

where ¢(s) is a feature mapped from state s. With a learning
rate (a), we define our update rules as follows:

0+ 0+ aVy
v <4—v+aVv,

Experiments and Numerical Analysis

We report experimental results for three benchmarks com-
prising Grid-World, Mountain-Car driving and Object-
World to validate our solution approach for the estimation of
discount factor in IRL. Behavioral (policy) data were gener-
ated using a specific discount factor (74 - agent’s discount
factor). Based on Equations (4) and (5) coupled with the
learning update rules; and after a fixed number of iterations,
we learn both the discount factor and reward. Data Gener-
ation - Given an MDP comprising the true (agent’s) reward
function (R 4) and discount factor(y4), we solve the MDP
and obtain the optimal policy (7 4) of the agent. Trajectories
(7;8) are sampled according to the 4. We feed the trajecto-
ries (data) into our IRL algorithm and subsequently learn
both the reward (Ry) and discount factor(yr). Given Rp,
and vz, we solve the forward (RL) problem and obtain the
learnt policy (7). The implementation was done via Python
and MATLAB toolkit for IRL (Levine, Popovic, and Koltun
2011).

Grid-World Environment

In a5 x 5 Grid-World, five actions correspond to moves in
north (1), west(<—), south ({), east (—) and no action (.);
with the MDP environment designed such that with prob-
ability of 0.7 success, it moves in the intended direction.
As stated in Equation 1, the reward is linear in the features.
The initial state in each trajectory is randomly drawn from
the possible states and the episode is completed at hori-
zon |7]. To generate behavioral data (£), each trajectory or
episode (1) is sampled from the optimal policy (7*) with dis-
count factor of the agent (y4); where & = {71, 72, ..., 7V}
and 70 = {(s1,a1)", (s2,0a2)%, ..., (s7,ar)'}. The reward
weights () and discount factor (y) are randomly initialized
between 0 and 1.

Results For brevity, we have reported very few experi-
mental results for both sparse and dense reward structures.
Nonetheless, experimental results for other trials (both dis-
count factor and reward learning) exhibit similar observa-
tions for the respective reward structures. Furthermore, the
value of A\ only enforces boundary conditions, it has no im-
pact if the discount factor is not close to the open boundaries
of 0 and 1 based on our extensive experiments for A in the
range —5 to 15. For accurate inference of discount factor:
the gradient information of Equation (5) used to update the
discount factor is the difference of discounted functions as
well as a further dependence on state visitation frequency
whose parameters are 6 and ~y.

In Figures 2 and 3, the Grid-World states are visualized in
a heat map to compare the agent’s and learnt rewards. The
learnt discount factor (vr) is closely approximated with a
difference of -0.01. While it may appear our algorithm un-
derestimates the discount factor, this was not the case in all
experimental results wherein some values were precisely es-
timated or overestimated. For the sparse reward case, our
algorithm estimates the discount factor within a difference
of magnitude 0.02 in general.
Sparse reward structure: From our experimental studies, a
very high similarity between learnt policy and agent’s policy
is also seen with dissimilar optimal actions in states not more
than two for the sparse reward structure. In addition, as seen
in Figure 2b, the absolute difference of the agent’s and learnt
optimal value functions were very minimal (between 0 and
1) for all states.
Non-sparse reward structure: For the non-sparse case as
seen in Figure 3a, our algorithm precisely estimated the dis-
count factor. However, in general, estimation of the discount
factor was within a difference of magnitude 0.03. We note
that learning for the non-sparse reward structure is more
challenging than the sparse case as we explain in the sec-
tion on analysis of softmax function. However, as we in-
crease the number of samples, there is an improvement in
the joint learning of reward and discount factor when the re-
ward structure is dense as seen in Figure 4 with y4 = 0.8. In
Figures 4b and 4c, as the sample size increases from 150 to
240, there is an improved accuracy in the estimation of 7y,
(0.79 to 0.8) and reward. The comparison of the difference
of value function of optimal policies of agent and learner
gives insight into the accuracy of learning. For brevity, we
report this measure for results obtained in Figure 2a. Al-
though, the optimal actions for the agent and learner differed
in two states as seen in Figure 2b, the difference in the value
functions of the resulting optimal policies was close to zero
as shown in Figure 5a.

Mountain-Car Driving Environment

The mountain car is a testing domain in RL wherein an
under-powered car is tasked with driving up on a steep hill.
Since gravity is stronger than the car’s engine. The car is sit-
uated in a valley and in order to drive up the hill, it has to
first move away from the goal (position > (.5) and climb
the slope on its left, and then it moves right, gaining enough
momentum to climb the hill on the right on top of which
lies the goal. The agent receives a negative reward at every
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time step when the goal is not reached. This deterministic
(finite) MDP environment comprises continuous state space
(Position € [-1.2,0.6]; Velocity € [—0.07,0.07] discretized
into 400 states (Position into 20; Velocity into 20) with 3
discrete actions being go left, go right or do nothing. The
reward weights (#) are randomly initialized between —1 and
1 while discount factor (vy) is randomly initialized between
Oand 1.

Results

Experiments for Mountain-Car environment are non-trivial
to run due to the fact that one has to allow for “adequate”
exploration coupled with the granularity of the environ-
ment. In this approach, the two continuous state variables
are pushed into discrete states by bucketing each continuous
variable into multiple discrete states and for stable learning,
the learning rate was set to 0.001. Also, a decaying explo-
ration rate facilitated a better convergence for the Q-learning
approach used to solve the forward (RL) problem.

Object-World Environment

Object-World (OW) is an MDP environment comprising |S]|
states in which possible actions include motions in all four
directions (+—, T, J, —) and also remaining in the same po-
sition (no action). Two different set of state features are im-

plemented based on colors placed randomly. The reward is
positive for cells which are both within distance 3 of color
1 and distance 2 of color 2, negative if only within distance
3 of color 1 and zero otherwise. See Levine, Popovic, and
Koltun (2011) and Wulfmeier, Ondruska, and Posner (2015)
for a more detailed exposition of the Object-World environ-
ment. The reward weights () and discount factor () are
randomly initialized between 0 and 1 and subsequently up-
dated with the feature-based gradients. In this OW environ-
ment, the reward is represented in three distinct color phases,
namely white, grey and black. On the continuum of white-
grey-black, white color has the highest reward down to the
black color with the lowest reward.

Results

Although, this example exemplifies non-linearity of the re-
wards in IRL, a linear approximation for our 121-state ex-
ample shows plausible results as seen in Figures 8. In Fig-
ure 8-(a), the agent’s discount factor is 0.45 which was accu-
rately inferred whilst the reward was learnt to a good extent.
At a glance, it appears the optimal policies are the same,
however, the optimal policies of the agent and the learner
differed in one state. On the other hand, in Figure 8-(b), the
learnt discount factor was overestimated by 0.01 with the re-
ward structure of the agent being quite similar with the learnt
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reward. Interestingly, the optimal policies of the agent and
learner are the same. The Object-World complexity poses a
challenge for a linear approximation reward learning with
discount factor estimation. Nonetheless, from our experi-
mental studies comprising 200 samples with a linear approx-
imation, our algorithm learns the discount factor within an
estimation error of £0.02. However, the learnt reward was
most accurate for areas of non-negative rewards in the un-
derlying MDP.

Analysis of Softmax Function in MLE

Maximum entropy and maximum likelihood are convex du-
als. By strong duality, the solutions of the primal and dual
are the same. However, in general, optimal values are not
the same. As seen from the mathematical formalism of
our approach, following the use of Lagrangian multipli-
ers and Karush-Kuhn-Tucker (KKT) conditions, we evolved
a maximum likelihood (ML) model from a maximum en-
tropy framework in which the parameters (v, R) to be opti-
mized in an exponential-family, specifically, the softmax (or
Boltzmann) distribution. Due to the monotonicity of the log
function, we seek to maximize the log-likelihood as stated
in Equation (3) to mitigate against computational under-
flow from product of probabilities (the log transformation
of the likelihood allows for the sum of these probabilities).
The maximum likelihood estimate is a point estimate and
a key property is the general feature that ML estimators
achieve optimal accuracy being asymptotically (vis-a-vis

sample size) consistent, and achieve the Cramer—Rao lower
bound on estimate variability (Lehmann and Casella 2006;
Lennart 1999). Furthermore, two properties that guarantee
asymptotic convergence of the ML estimator are identifi-
cation and concavity (Reverdy and Leonard 2015). Recall
that the reward is a product of reward weights and known
features as in Equation (1), hence given ¢ and 6, R is ob-
tainable. For 0 < R < Rjae < 00 : R, Rpae € RT
and 0 < v < 1, the log-likelihood function (6, ;&) =

% Doree ZLT:'O Y 0T ¢(74.17) — log Z is concave given the
negative semi-definiteness of the matrix of second deriva-
tives - Hessian (H (6, 7v)). When the reward is lower bounded
by a negative number and with MDP being a mix of positive
and negative rewards —0o0 < Ryin < R < Ry < 00,
ie., Ryin € R™, one can not conclude if the likelihood
function is concave or otherwise. However, for a positive
shift of the rewards with a scalar X € R™, the function is
concave.

Identification is a major concern in softmax decision-
making models (Asadi and Littman 2017; Reverdy and
Leonard 2015), such identifiability concern can be data
driven (Reverdy and Leonard 2015). A common trick is to
fix some of the parameters, in this light, the sparse reward
structure is less susceptible to this non-identification prop-
erty of the softmax operator. Thus, for a sparse reward, the
maximum likelihood estimates for both the reward and dis-
count factor would converge to the true parameter values as
the sample size increases.
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and learner (L) with v4 = 0.95 and v, = 0.95.

Insight: Another source of multiplicity of reward solu-
tions is introduced in IRL with the softmax distribution
model. Although the utility objective in the softmax operator
is concave, different combination of parameter values would
give rise to the same likelihood, hence, non-identifiable.
Thus, there’s an additional source of ambiguity to the two
aforementioned ones in IRL. To address the ambiguity due
to the softmax operator, we can learn a sparse reward and
show (Walter and Pronzato 1997) that the softmax operator
becomes identifiable. However, the recovered sparse reward
would give rise to multiplicity of optimal policies in the for-
ward RL solution.

Related Work

No prior work has simultaneously estimated the discount
factor and reward in IRL, more so, discount factor has not
been looked at in the general IRL literature. Linear pro-
gramming approaches like Ng and Russell (2000) in IRL
explicitly solve for the reward via a mathematical program
and enforce sparsity via L1-regularization. It is worthy to
state that the constitutional mathematical framework (Ng
and Russell 2000) was very susceptible to changes in dis-
count factor. For instance, as we try to recover sparse solu-
tions via L1-regularization, the learning becomes unstable

with changes in discount factor as sparsity and stability ”do
no not mix” (Xu, Caramanis, and Mannor 2011). To illu-
minate, given the mathematical program (Ng and Russell
2000) which was transformed into a “proper” linear pro-
gram (LP) by introduction of auxiliary variables and ad-
ditional constraints, optimal (learnt) reward was obtained.
However, given the LP, as discount factor is varied for the
same demonstration data and penalty term for sparsity, the
learnt reward varied significantly, hence unstable.

Another class of IRL algorithms (Abbeel and Ng 2004)
is based on matching the feature expectations of an expert
and learner. However, different optimal policies can yield
the same feature expectation. Probabilistic models based
on Bayesian and maximum entropy frameworks mitigate
against known ambiguities in IRL framework. Choi and
Kim (2011) employed a probabilistic approach to resolve
the ambiguity in reward solution space via the gradient-
based maximum a posteriori (MAP) estimation for re-
covering the reward function. This was facilitated by the
(sub)differentiability of the posterior distribution. A more
thoroughly probabilistic and model-based approach (Ziebart
et al. 2008) was adopted based on the principle of maximum
entropy (Jaynes 1957) in which learning from demonstra-
tion (expert trajectories) was done with the objective to find
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Figure 8: Actual and learnt rewards, discount factors and optimal policies.

a reward that maximizes the likelihood of the demonstrated
trajectories. However, an expensive step in estimating the
gradient is the computation of state visitation frequencies
(P(s|6,7)) for which an algorithm was devised.

Furthermore, a neural network extension of the maxi-
mum entropy framework (Ziebart et al. 2008) is seen in
Waulfmeier, Ondruska, and Posner (2015). Interestingly, the
maximum likelihood IRL (Vroman 2014) and maximum en-
tropy (Ziebart et al. 2008) algorithms seek a maximum like-
lihood estimate for the reward function.

Common model-free approaches (Boularias, Kober, and
Peters 2011; Finn, Levine, and Abbeel 2016) have surpris-
ingly learnt good optimal policies at the expense of a badly
learnt reward function. Another pseudo-IRL approach (Ho
and Ermon 2016) under the class of imitation learning by-
pass the learning of the reward function and directly learns
the policy and follows a connection with a model-free
framework (Finn, Levine, and Abbeel 2016).

Conclusions and Future Work

Inverse Reinforcement Learning is mainly concerned with
explaining (human) behavior. Hence, it is critical to fully
comprehend such behavior and the knowledge of the dis-
count factor will propel better synthesis of the learnt reward
function. It was shown that the recovered reward function
was non-unique with respect to the choice of the discount
factor.

After extensive experiments, the normalized exponential
of utility based approach propelled the learning of discount
factor and reward. The maximum likelihood estimate for ~y;,
was subject to boundary constraints of the discount factor
as we penalized the log-likelihood function of Equation (3)
with penalty term \. Experimental results of our method on
selected benchmarks have shown a very promising first step
towards the simultaneous estimation of rewards and discount
factor.

Despite the encouraging results, it is important to state the
following: the sample size affects the learning of the reward
and discount factor. Thus, the sample complexity of our ap-
proach is subject to further investigation. Also, a suggestion

for future work is a characterization of the extent to which
parameters are identifiable given the samples, especially for
a non-sparse reward structure.
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Appendix

We adopt the following example in Figure 9 from (Sut-
ton and Barto 2018) to show the significance of discount
factor and consequently the effect on trajectories sampled
from the optimal policy. Suppose an expert acted in the
MDP of Figure 9 with discount factor 73 = 0.25 or
2 = 0.92 . The rewards (r) are received deterministi-
cally after each action. The key decision is to be made at
state S1, a solution of this MDP would give rise to ac-
tions a2 and a3 as optimal actions in state S1 for the ex-
pert when y; = 0.2 and y2 = 0.92, respectively. Based on
the optimal policies of the respective discount factors, the
following (selected finite) trajectories (7) would be gener-
ated: for v; — 7 = {(51,a2), (52,al),(S51,a2)}; and for
v2 — 7 = {(51,a3),(53,al), (S1,a3)}. Evidently, expert
when v; = 0.2 would never visit state 53, albeit acting opti-
mally with respect to the discount factor. On the other hand,
with v5 = 0.92, the expert would never visit state S2.

Figure 9: MDP with 3 states represented as nodes. The re-
wards () and actions (a1, a2, a3) are shown on the arcs. For
instance, action a2 in state S1 would take an expert to state
52 and get a reward, r = 1.



