
Neural Network Heuristic Functions for Classical Planning:
Reinforcement Learning and Comparison to Other Methods

Patrick Ferber,1, 3 Florian Geißer,2 Felipe Trevizan,2 Malte Helmert,1 Jörg Hoffmann3

1 University of Basel
first.last@unibas.ch

2 The Australian National University
first.last@anu.edu.au

3 Saarland University, Saarland Informatics Campus
last@cs.uni-saarland.de

Abstract

How can we train neural network (NN) heuristic functions
for classical planning, using only states as the NN input?
Prior work addressed this question by (a) supervised learning
and/or (b) per-domain learning generalizing over problem in-
stances. The former limits the approach to instances small
enough for training data generation, the latter to domains
and instance distributions where the necessary knowledge
generalizes across instances. Clearly, reinforcement learning
(RL) on large instances can potentially avoid both difficul-
ties. We explore this here in terms of three methods drawing
on previous ideas relating to bootstrapping and approximate
value iteration, including a new bootstrapping variant that es-
timates search effort instead of goal distance. We empirically
compare these methods to (a) and (b), aligning three differ-
ent NN heuristic function learning architectures for cross-
comparison in an experiment of unprecedented breadth in this
context. Key lessons from this experiment are that our meth-
ods and supervised learning are highly complementary; that
per-instance learning often yields stronger heuristics than per-
domain learning; and that LAMA is still dominant but is out-
performed by our methods in one benchmark domain.

1 Introduction
Neural networks (NN) have been shown to be able to
learn powerful search guidance for several complex games.
Successes include the AlphaGo/Zero system series (Silver
et al. 2016, 2017, 2018), as well as heuristic search for
single-agent puzzles including Rubik’s Cube (Agostinelli
et al. 2019). Given that game-state evaluators correspond
to heuristic functions, and given the prominence of heuris-
tic search in AI Planning (e.g., Hoffmann and Nebel 2001;
Helmert and Domshlak 2009; Richter and Westphal 2010;
Helmert et al. 2014; Domshlak, Hoffmann, and Katz 2015),
training NN as heuristic functions is highly promising there,
too. Several works already addressed this problem with dif-
ferent methods and from different angles (Toyer et al. 2018;
Garg, Bajpai, and Mausam 2019; Ferber, Helmert, and Hoff-
mann 2020; Shen, Trevizan, and Thiébaux 2020; Rivlin,
Hazan, and Karpas 2020; Yu, Kuroiwa, and Fukunaga 2020;
Karia and Srivastava 2021).

Here, we focus on learning heuristic functions for clas-
sical planning from scratch using only states as the NN in-
put. Prior work addressed this by (a) supervised learning;

and/or (b) per-domain learning which generalizes over all
instances in a domain, where a “domain” fixes a set of predi-
cates and action schemas, while instances specify object uni-
verse, initial state, and goal. Most works fall into category
(b), exploring different variants of NN architectures based
mostly on graph convolution (Garg, Bajpai, and Mausam
2019; Shen, Trevizan, and Thiébaux 2020; Rivlin, Hazan,
and Karpas 2020; Karia and Srivastava 2021). Two works
(Ferber, Helmert, and Hoffmann 2020; Yu, Kuroiwa, and
Fukunaga 2020) use supervised learning (a) for per-instance
learning, where the NN heuristic function generalizes only
over the states in the state space of the instance (not over
goals, nor over object universes), and simple feed-forward
NN architectures can be used. Note that per-instance gen-
eralization is useful in settings where many different initial
states may be encountered online, so that we can use the
same learned heuristic function on all of these.

Per-instance supervised learning can yield NN heuris-
tic functions competitive with the state of the art (Ferber,
Helmert, and Hoffmann 2020), but it is limited to instances
small enough for training data generation – solving many
sample states with an off-the-shelf planner as the teacher
– to be feasible. Per-domain learning solves the teacher-
scalability problem as it can train the NN on small instances.
Yet this requires to transfer search knowledge from small in-
stances to large ones, which is challenging and might work
only for particular domains and instance distributions.

Clearly, per-instance RL can potentially avoid both diffi-
culties. We explore this here in terms of three methods draw-
ing on previous ideas, namely two variants of bootstrapping
and one variant using approximate value iteration with Bell-
man updates.1 For bootstrapping, we follow Arfaee, Zilles,
and Holte (2011). We train a NN heuristic function by run-
ning it on increasingly difficult training states, generated by
increasingly long backward walks from the goal. While Ar-

1We remark that the designation “RL” for these methods is de-
batable. We do not use rewards, and we do not learn an action pol-
icy. Nevertheless, the methods we explore share an essential char-
acteristic with RL, in contrast to supervised learning: they itera-
tively improve the learned knowledge, generating training data for
the next iteration based on the current knowledge. We are not aware
of a separate term for this kind of method, and are using “RL” to
avoid cumbersome terminology.

faee, Zilles, and Holte used pre-existing heuristic functions
as input features (also in classical planning (Arfaee, Holte,
and Zilles 2011)), we learn the heuristic function hBoot from
scratch using just the planning state as NN input. We fur-
thermore introduce a new variant hBExp which does not learn
goal-distance estimation but an estimation of the number of
states that greedy best-first search needs to expand when us-
ing the heuristic. We show that, under idealized settings, this
learning process converges to h∗. For approximate value it-
eration, we follow Agostinelli et al. (2019). The NN heuris-
tic function hAVI is also trained on states s sampled with
backward walks, but now we generate the labels with a k-
step look-ahead: we evaluate hAVI on the fringe states of that
look-ahead, perform Bellman updates backwards to s, and
use the final updated value for training on s.

We empirically compare these three RL-inspired meth-
ods to (a) per-instance supervised learning as per Ferber,
Helmert, and Hoffmann (2020), as well as (b) per-domain
learning using hypergraph networks (STRIPS-HGN) as per
Shen, Trevizan, and Thiébaux (2020). Thus, we align three
different NN heuristic function learning architectures for
cross-comparison. Given that previous work in this area has
never compared NN heuristics from different works against
each other, this is an experiment of unprecedented breadth
in this context. We invest substantial work into making the
comparison fair, adjusting the training processes of prior
works to be as comparable as possible. While this compari-
son still needs to be treated with care, we believe that such
cross-comparison is ultimately required to advance the em-
pirical field of NN learning in planning. For example, a plau-
sible hypothesis is that per-instance learning produces better
heuristics than methods that have to generalize over an en-
tire domain. Ours is the first work to evaluate that hypothesis
for NN heuristic functions in planning.

Specifically, our experiment shows the following key
lessons:

• All NN heuristic functions are brittle, excelling in some
domains while achieving hardly anything in others.

• The NN heuristic functions are highly complementary. In
particular, RL is vastly superior to supervised learning in
4 out of 10 benchmark domains, but vastly inferior in 4
other domains.

• Per-instance learning often trains stronger heuristics than
per-domain learning. HGN perform poorly in 7 of our do-
mains.

• While the symbolic state-of-the-art planner LAMA
(Richter and Westphal 2010) (specifically its first itera-
tion, which is geared at finding a plan as quickly as pos-
sible) is generally still dominant, NN heuristic functions
can outperform it in particular domains. In our experi-
ments, this happens for the single domain (Storage) where
LAMA’s performance is weak.

2 Preliminaries
We use the FDR planning framework (Bäckström and Nebel
1995). A planning task is a tuple Π = 〈V,A, sI ,G〉. V is a
set of variables, A is a set of actions, sI is the initial state,

and G is the goal. Every variable has a domain D. A fact
is a variable-value pair 〈v, d〉 where v ∈ V and d ∈ Dv .
The initial state is a complete variable assignment, i.e. a set
which contains once fact for each variable. The goal is a
partial variable assignment. Each action a ∈ A defines a
precondition prea and an effect eff a, both are partial vari-
able assignments. An action a is applicable in a state s if
prea ⊆ s. Applying a in s leads to the successor state
s′ = {〈v, d〉 | 〈v, d〉 ∈ s,¬∃d′ : 〈v, d′〉 ∈ eff a} ∪ eff a. The
function succ(s) generates all successor states of s, i.e. the
set of states produced by applying the applicable actions of
s to s. For simplicity we consider unit action costs (all costs
are 1). A plan π is a sequence of actions 〈a1, . . . , an〉, such
that starting from sI and sequentially applying the action in
π results in a state s∗ with s∗ ⊆ G.

We need some further concepts. First, the FDR regres-
sion of a partial variable assignment G over an action a is
defined as (G \ eff a) ∪ prea if eff a ∩ G 6= ∅ and G is
consistent with eff a (i.e. there is no variable assigned dif-
ferent values by G and eff a); otherwise, the regression of
G over a is undefined. This operation underlies backward
search (in our case: random walks). Second, Bellman up-
dates are a well-known method to iteratively improve state-
value estimates (e.g., Bertsekas and Tsitsiklis 1996). In unit-
cost classical planning, the Bellman equation simplifies to
h∗(s) = 1 + mins′∈succ(s) h

∗(s′) where h∗ denotes the ex-
act state value (here: goal distance). For an approximation h
of h∗, a Bellman update is h(s) := 1 + mins′∈succ(s) h(s′).

3 Common Hyperparameters
Before we discuss our three RL-inspired methods in detail,
we describe the general neural network architecture and the
basic hyperparameters. We use RL to train heuristic func-
tions for a given FDR task Π. Later, greedy best-first search
(GBFS) uses these heuristics. As we have unit action costs,
our learned heuristic functions are goal-distance estimators
(rather than remaining-cost estimators).

We use residual networks (He et al. 2016) (which were
successful in image classification, and have previously been
used on Rubik’s Cube (Agostinelli et al. 2019)), consisting
of two dense layers, followed by one residual block with
two dense layers, followed by a single output neuron. Each
dense layer has 250 neurons. All neurons use the ReLU acti-
vation function. The inputs to our NN are states represented
as fixed-size Boolean vectors. We associate every entry of
the input vector with a fact of Π. If the fact corresponding to
a vector entry is in the input state, then we set the entry to
1. Otherwise, we set it to 0. The output of our NN is a sin-
gle number which represents a heuristic value. In contrast
to previous work, we do not use an unary or one-hot encod-
ing for the output, because we cannot know an upper limit
for the heuristic values when the NN is first created. We use
the mean squared error as loss function, and the adam op-
timizer with default parameters (Kingma and Ba 2015). To
prevent performance instabilities during training, we update
the model for the sample generation after at least 50 epochs
have passed and the mean squared error is below 0.1.

Because it takes longer to generate a training batch of 250
samples than to train on that batch, we use experience re-

play. The data generation process pushes all samples into a
first-in-first-out buffer with a maximum size of 25,000. In
each training epoch we uniformly choose 250 samples from
the buffer. This allows us to train multiple times on the same
(recent) samples. It also decouples training and data genera-
tion and allows to run the two processes in parallel.

4 Bootstrapping
In what follows, we introduce three different RL-inspired
methods. The present section is concerned with two variants
based on bootstrapping, while the next section introduces a
method based on approximate value iteration.

4.1 Bootstrapping a Goal-Distance Estimator
We follow the approach to bootstrapping as introduced by
Arfaee, Zilles, and Holte (2011), training the heuristic func-
tion h on increasingly difficult training states s, generated by
backward walks of increasing length. To obtain the training
labels, a GBFS using the current h tries to solve those states
s. Thus h is iteratively improved from the more accurate
goal-distance estimates obtained using search. We make the
following adaptations to obtain our heuristic function hBoot:

• While Arfaee, Zilles, and Holte (2011) also used an NN,
their network was quite small (single layer) and used pre-
existing (model-based) heuristic functions as input fea-
tures. Instead, we use the FDR state as input, and eval-
uate the extent to which a more complex NN architecture
can cope with this basic representation (discovering the
relevant features itself).

• We need to define what “backward walks” mean in our
context: Arfaee, Zilles, and Holte (2011) focused on do-
mains where the goal state is fully specified, while in
planning typically the goal is a partial state only. To ad-
dress this, we use FDR regression. We start at the goal
of Π, and perform a random walk for n regression steps,
where n is uniformly chosen from {0 ≤ n ≤walk length}
with walk length being a growing (see below) parame-
ter. The regression walk ends with a partial assignment.
We randomly complete that partial assignment to a state,
assigning each unassigned variable a random value.2 We
use Fast Downward’s translator (Helmert 2009) to iden-
tify (some) mutually exclusive fact pairs (mutexes), and
we enforce mutexes are respected.

Our other changes amount to parameter tuning. Like Ar-
faee, Zilles, and Holte (2011), we run GBFS with the current
learned heuristic hBoot to obtain labels on the training states.
We use a timeout of 10 seconds in this search. If the search
succeeds, we store all states si along the plan for training,
the associated goal-distance estimates being taken from the
plan (number of actions starting from si). We observed that
in the beginning hBoot is too uninformed to solve states sam-
pled far away from the goal. Therefore, the sampling starts

2Arfaee, Holte, and Zilles (2011) also mention this possibility,
though they suggest to randomly complete the goal (rather than the
backward walk endpoint), which performed worse in our prelimi-
nary experiments.

with a walk length between 0 and 5. We double the maxi-
mum random walk length whenever GBFS finds a plan for
more than 95% of the training states. At some point, further
increasing the random walk length has no effect anymore, so
we double the maximum walk length at most 8 times.

4.2 Bootstrapping a Search-Space-Size Estimator
In addition to hBoot, we designed a variant hBExp, which does
not learn a goal-distance estimation, but instead learns to es-
timate the number of states that GBFS will expand. The mo-
tivation is that what we really want to give preference to are
states that minimize search space size. Goal distance esti-
mates generally tend to correlate with search space size, but
in a lose way given the highly volatile behavior of search
as a function of the node ordering (small differences in goal
distance estimates can lead to huge search space size differ-
ences). Estimating search space directly may thus provide a
more direct link between the training objective and our ulti-
mate objective to minimize search effort.

Specifically, hBExp iteratively learns to estimate (via a
bootstrapping process similar to hBoot) the search space size
of GBFS when using hBExp as the heuristic function. While
this definition is circular, it does make sense in that, in ide-
alized form, hBExp necessarily converges to h∗. Namely, de-
fine idealized hBExp as using a lookup-table representation
G ∈ N|S| of the heuristic function, obtained by n learning
steps that iteratively update all states as follows:

Gn(s) =

{
#exp. of GBFS(s,Gn−1) if solvable(s)
∞ otherwise

For convenience (in the proof below), we start counting the
update iterations with n = 0. In G0(s), GBFS is run on an
arbitrary initialization (any heuristic function).

The lookup table abstracts from the need to generalize
across states in a compact ML model (like our neural net-
work), and the update iterations abstract from the actual
training of that ML model. We have:

Theorem 4.1 With unit action costs, idealized hBExp as just
described converges to h∗.

PROOF: Denote by S the set of all states and by H∗n the set
of states whose value is h∗ after n updates: H∗n := {s |
s ∈ S, Gn(s) = h∗(s)}. We show by induction that H∗n ⊇
{s|s ∈ S, h∗(s) ≤ n}.
Induction basis: After iteration n = 0, all goal states have
the value 0, so, H∗0 ⊇ {s | s ∈ S, h∗(s) = 0}
Induction step: s is a state with h∗(s) = n. Then s has a
successor s′ with h∗(s′) = n− 1. By induction hypothesis,
we have H∗n−1 ⊇ {s | s ∈ S, h∗(s) ≤ n − 1} and s′ ∈
H∗n−1. Thus, there is a path P from s′ to the goal withGn−1
decreasing by 1 in each step. A GBFS run on s generates
s′ when expanding s, and afterwards follows P (or another
path of the same length) resulting in n expansions. Hence
H∗n ⊇ {s|s ∈ S, h∗(s) = n}. The same argument applies
by induction assumption to all states t where h∗(t) < n:
GBFS follows a direct path to the goal. So we have t ∈ H∗n,
and hence H∗n ⊇ {s|s ∈ S, h∗(s) ≤ n} as desired.

In all updates, GBFS run on a dead-end state s proves that
s is a dead-end. Thus, all states s with infinite h∗ value also
satisfy h∗(s) = Gn(s), for all n. This proves the claim. �

In practice hBExp is not guaranteed to converge to h∗. We
cannot store a large enough lookup table in memory and
have to resort to an approximator, e.g. a neural network. Fur-
thermore, it is infeasible to perform an update on all states in
each iteration. And finally, GBFS might run out of memory
or require more time than available for a state. The first two
arguments also show that any approximate value iteration is
not guaranteed to converge to h∗.

Our bootstrapping procedure for hBExp uses the same
backward walks as before, and runs GBFS using the current
heuristic function with a time limit of 10 seconds as before.
If the search succeeds, we use the number of expanded states
as training label; otherwise, we do the same thing with the
number of states expanded up to the time limit as label. Our
motivation for the latter is purely empirical – this turned out
to be better than using only the successful searches. Intu-
itively, training on unsuccessful states s provides a useful
training signal regarding which states are difficult to handle.

5 Approximate Value Iteration
Our third RL-inspired NN heuristic function hAVI is trained
using approximate value iteration, as follows.

Exact value iteration applies Bellman updates to a tabular
value function h which maps every state s to a remaining-
cost estimate. If every state s is updated infinitely often, h
converges to h∗ regardless of the update ordering (Bertsekas
and Tsitsiklis 1996). The idea in approximate value iteration
is to replace the value table with an approximate value func-
tion h, like an NN. Later, the NN can be used as a heuris-
tic function. This has been successfully done in single-agent
puzzles including Rubik’s Cube (Agostinelli et al. 2019).
Here, we adapt this approach to classical planning.

The generation of sample states s for training is done ex-
actly as for bootstrapping, except that we keep the maximum
walk length fixed. To generate the training labels, instead of
running GBFS, we do a k-step look-ahead from s. The look-
ahead depth k here is a parameter; we use k = 2 throughout.
We evaluate the fringe states of the look-ahead search tree,
as 0 if they are goal states and otherwise with hAVI. Then we
perform Bellman updates backwards, updating the values of
intermediate states t in the tree with those of their children.
The updated value at s is used for training.

6 Boosting NN Heuristics through Validation
In preliminary experiments, we observed that the perfor-
mance of our NN heuristic functions is brittle. For a given
benchmark instance, they often solve either all testing states
or none at all, with the picture changing radically after re-
training. Performance is thus drastically affected by the ran-
domness during training (e.g. parameter initialization and
random walks in training data generation). As a simple rem-
edy, we introduce a validation method. For each benchmark
instance, we generate 10 new initial states for validation in
the same way the test states are generated. After training a

NN, we run GBFS with the model as heuristic on the vali-
dation states, with a search-time limit of 30 minutes. If less
than 80% of the validation states are solved, we retrain. We
retrain at most three times, and the last trained NN is used.

In our experiments, we compare our technique against
two state-of-the-art techniques for learning NN heuris-
tic functions, namely supervised learning (hSL) by Ferber,
Helmert, and Hoffmann (2020), and STRIPS-HGN (hHGN)
by Shen, Trevizan, and Thiébaux (2020). For fair compar-
ison, we also use validation on those two approaches. As,
in both approaches, training data generation is independent
from training, we generate the training data only once and
use it to train 10 models. We use the same validation states
as for our methods. For hSL, validation led to large coverage
changes, while hHGN was more robust (we observed only
minor performance fluctuations).

7 Experiment Methodology
As our experiment is complex, we devote this section to its
description. We first cover implementation, computational
resources, and benchmarks as usual. We then proceed to
the key new feature, comparing three different NN heuris-
tic function learning architectures. We invested substantial
work into making this comparison fair, and we describe our
adjustments for this purpose in what follows.

7.1 Implementation and Time Limits
We implemented our NN heuristic functions on top of FD
(Helmert 2006), starting from Ferber et al.’s (2020) code
base, and used Lab (Seipp et al. 2017) for our experiments.
We run all heuristic functions in greedy best-first search
(GBFS), with 4 GB of memory. We run the search on a
single core because we compare to the FF heuristic (hFF,
Hoffmann and Nebel 2001) and the LAMA planner (Richter
and Westphal 2010) and they cannot exploit multiple cores.
However, we design our experiments to account for the facts
that 1) NN heuristic functions are extremely slow in state
evaluation compared to model-based heuristics such as hFF,
which puts them at an intrinsic disadvantage; while 2) it is
well known that NN evaluation can be sped up dramatically
using GPUs or TPUs (Silver et al. 2016, 2018; Agostinelli
et al. 2019), which arguably counter-acts this disadvantage
in practice (also, Ferber, Helmert, and Hoffmann (2020)
showed that multiple cores speed up state evaluation). We
hence set a generous search-time limit of 10 hours, allowing
the NN heuristics to exhibit strengths in informedness.

We run training (including data generation) for 28 hours
on 4 cores of an Intel Xeon E5-2600 processor with 3.8 GB
memory. We use the Keras framework (Chollet 2015) with
Tensorflow (Abadi et al. 2015) as back-end.

We compare our goal-distance estimators based on boot-
strapping (hBoot), search-space-size estimators based on
bootstrapping (hBExp), and goal-distance estimators based
on approximate value iteration (hAVI) against the super-
vised learning approach (hSL) of Ferber, Helmert, and Hoff-
mann (2020), STRIPS-HGN (hHGN) by Shen, Trevizan, and
Thiébaux (2020), the FF heuristic (hFF) by Hoffmann and
Nebel (2001), and LAMA (Richter and Westphal 2010). Our

code, benchmarks, and experimental results are online avail-
able(Ferber et al. 2021).

7.2 Benchmarks
We use the same benchmark domains as Ferber, Helmert,
and Hoffmann (2020): Blocksworld, Depots, Grid, NPuz-
zle, Pipesworld-NoTankage, Rovers, Scanalyzer, Storage,
Transport, and VisitAll. For each domain, Ferber, Helmert,
and Hoffmann (2020) selected instances difficult enough to
be interesting and easy enough to generate training data. We
refer to these tasks as moderate, in contrast to the smaller
easy tasks, which we ignore; and to the larger hard tasks we
also consider. In Blocksworld and Grid, there were no such
larger instances, so we generated new ones. We do not con-
sider the benchmarks used by Shen, Trevizan, and Thiébaux
(2020) to evaluate STRIPS-HGN, as all these instances are
classified as easy or are very close to this classification.

For each benchmark instance, we evaluate our heuristic
functions on 50 distinct test states. For the moderate tasks,
we use the states published by Ferber, Helmert, and Hoff-
mann (2020). For the hard tasks, we use their method to cre-
ate test states, by random forward walks (200 steps) from the
original initial state.

7.3 Adaptations for hSL

Only minor changes are needed to compare with hSL, which
like our heuristic functions is based on per-instance learn-
ing. Ferber, Helmert, and Hoffmann (2020) generated train-
ing data for up to 400 hours, on a single CPU core. Then
they trained for up to 48 hours using 4 CPU cores and 12
GB of memory. This exceeds our resource limits by far, and
also Ferber et al. state themselves that, in many domains, a
fraction of the training data is sufficient. Thus we adapted
their resource limits to our setting, as follows.

For each benchmark instance, we generate training data
on a single core for 56 hours. We train 10 heuristic functions.
Each heuristic function is trained on two cores for up to 2.8
hours. Supervised learning has to keep the training data in
memory, thus we use Ferber et al.’s original memory limit of
12 GB. We use validation as described above, and evaluate
the resulting heuristic function hSL in our experiments.

7.4 Adaptations for hHGN

STRIPS-HGN is designed for good performance with short
training time, and in their original work Shen, Trevizan, and
Thiébaux (2020) train the networks for only 10 minutes on
small-sized problem instances. To provide a fair compari-
son, we adapted the training procedure of STRIPS-HGN to
account for the extra training time and the source of train-
ing data used by the other learning approaches. Precisely,
for each domain, we trained 10 different STRIPS-HGN net-
works simultaneously for up to 28 hours using 4 cores and
3.8 GB per core. We split the training time between data
generation (10 hours) and network training (1.8 hour per net-
work). Initially, we tried out different training parameters for
STRIPS-HGN. We observed that, for Blocksworld, Scana-
lyzer and Transport, the original training time of 10 minutes
and a shorter data generation time of 2 hours leads to more

robust performance. We hence used this setup for these three
domains. In all cases, we use the validation states to select
the best STRIPS-HGN network per domain.

We generate the training data for STRIPS-HGN as fol-
lows. We sample, with replacement, a moderate or hard
instance, perform the same backward walk as hBoot and
hBExpfor n steps (see below), and solve the generated task
using A∗ instead of GBFS (as in the original STRIPS-HGN).
We repeat this procedure until time is up. We discard every
task solved within 5 minutes as they are to easy. We also dis-
card tasks not solved after 30 minutes as it is unlikely that
we will find a solution. From the solved tasks, we use the
states along the (optimal) plans as training data.

The random walk length n here is uniformly chosen from
{n ≤ n ≤ n} where n and n are initially 50 and 500, re-
spectively. Whenever our procedure generates an easy task,
it updates the lower bound n to (n + 3n)/4; whenever our
procedure generates a timed-out task, it updates the upper
bound n to (n + n)/2. The number of state-value pairs ob-
tained following this procedure ranges from 78 for Trans-
port to 1563 for VisitAll. Al the mentioned parameters were
tuned so as to optimize hHGN’s performance in GBFS.

8 Experiment Results
Table 1 summarizes our empirical findings in terms of cov-
erage, i.e. the fraction of solved test states when using the
different heuristic functions in GBFS. The table is split into
three parts, which we will discuss in turn below. The effect
of validation as per Section 6 is evaluated separately, on the
moderate tasks, through the left part (w/o validation) and
middle part (w/ validation) of the table. The right part of the
table evaluates the heuristic functions’ capability to scale to
the hard tasks. Within each table part, we highlight the best-
performing NN heuristic function in bold.

8.1 Validation
Consider first the data regarding validation, comparing the
left part of Table 1 to the middle part. The data shows that
for each of our RL techniques and in most domains, cov-
erage increases. The improvement is often substantial, e.g.
from 31.7% to 60.3% for hBoot in Depots. As validation
hardly ever deteriorates performance (the only case in our
data is from 61.% to 57.5% for hBExp in Storage), we keep it
switched on in what follows.

8.2 Coverage Comparison for Moderate Tasks
Consider now the middle part of Table 1, and consider first
the relative performance of our three RL-inspired methods.
No method dominates the others in all domains. hBoot has
highest coverage in 7 domains, hBExp in 4. Both techniques
solve all states in Grid and Transport. hAVI is close to the
highest coverage in 2 domains.

Comparing the RL methods against hSL, we see that hSL

outperforms RL in 4 domains, hBoot outperforms hSL in 6
domains, hBExp outperforms hSL in 2 domains, and hAVI out-
performs hSL in 2 domains. Most strikingly, the coverage
differences are drastic in many domains. For example, the
RL methods have poor coverage in Blocksworld, while hSL

Moderate Tasks Moderate Tasks with Validation Hard Tasks with Validation
without Validation

Domain hBoot hBExp hAVI hBoot hBExp hAVI hSL hHGN hFF LAMA hBoot hBExp hAVI hSL hHGN hFF LAMA

blocks 0.0 0.0 0.0 18.0 0.0 0.0 80.4 100.0 98.8 100.0 0.0 0.0 0.0 0.0 50.0 61.6 96.8
depots 31.7 17.7 43.7 60.3 32.7 54.7 90.3 0.0 98.0 100.0 8.3 4.3 12.9 35.4 0.0 36.0 82.6
grid 100.0 100.0 51.0 100.0 100.0 51.0 93.0 0.0 96.0 100.0 87.8 95.0 70.5 60.2 0.0 53.2 100.0
npuzzle 27.0 0.0 1.0 28.0 0.0 1.0 0.0 0.3 97.5 100.0 0.0 0.0 0.0 0.0 0.0 33.2 86.5
pipes-nt 36.2 51.2 21.4 57.8 68.4 50.2 92.2 7.6 82.4 99.4 23.4 19.1 8.0 48.7 0.0 27.4 69.3
rovers 36.5 15.2 34.2 48.2 21.8 45.0 26.0 14.0 84.2 100.0 2.8 0.8 6.5 1.5 0.3 13.9 100.0
scanalyzer 33.3 59.7 66.7 33.3 70.7 67.3 82.7 11.0 98.3 100.0 3.3 0.0 60.7 60.0 0.0 98.0 100.0
storage 89.0 61.0 67.0 89.0 57.5 69.5 24.5 0.0 48.0 38.5 27.2 13.2 15.8 0.0 0.0 13.8 11.5
transport 83.8 79.5 70.0 100.0 100.0 87.5 99.2 94.7 98.5 100.0 0.0 0.0 2.4 0.0 0.0 0.0 92.8
visitall 17.0 0.0 0.0 55.3 0.0 0.0 0.0 100.0 93.3 100.0 28.0 0.0 0.0 0.0 100.0 74.0 100.0

Table 1: Coverage (in %) of all techniques. The left block shows the coverage of our approaches on the moderate task set if no
validation is used. The middle and the right block show the coverage of all techniques on the moderate respectively tasks. Here,
we use validation for all learning based techniques. Per block, we highlight the best learning based technique.

solves 80% of the moderate tasks. In Rovers, the tables have
turned, with hSL solving 26% while hBoot and hAVI solve
twice as many.

Adding hHGN to the comparison, we see that it excels
in 2 domains, namely Blocksworld and VisitAll where the
RL approaches have difficulties; and delivers good perfor-
mance in Transport; but has very poor coverage in all other
7 domains. Often, the reason is the hypergraph size under-
lying STRIPS-HGN, which scales with the task size. For
many tasks in Depots, Storage and Grid, the hypergraph size
exceeds memory. For other domains, evaluating the hHGN

heuristic takes too much time due to the large hypergraphs.
The strong performance on Blocksworld and VisitAll is, at
least in part, due to the relatively small size of the generated
hypergraphs: less than 1000 nodes and 1500 hyperedges.

The primary conclusion from this data is that the differ-
ent NN heuristic functions are highly complementary to each
other. No heuristic dominates any other, and each approach
favours a subset of the domains. There seems, however, to
be a tendency that per-instance learning can often yield more
effective heuristics than per-domain learning, at least as rep-
resented by hHGN.

Turning the comparison to model-based planners, as in
the experiments run by Ferber, Helmert, and Hoffmann
(2020), the data shows that LAMA and hFF are highly
competitive across all domains, generally outperforming all
learning-based approaches. Indeed LAMA has perfect or al-
most perfect coverage everywhere, so it is impossible to beat
on these benchmarks. The exception is Storage, which is the
single domain where LAMA struggles. In that domain, all
our three RL approaches – but neither hSL nor hHGN – out-
perform LAMA. hBoot solves almost 90% of the tasks com-
pared to only 39% for LAMA and 48% for hFF.

8.3 Coverage Comparison for Hard Tasks
Turning now to the hard tasks (right block of Table 1), we
observe that coverage drops for all techniques in almost
all domains. Qualitatively though, the comparison across
approaches is similar to the moderate tasks. The learned
heuristic functions are still highly complementary, indeed
now every such heuristic has domains in which it yields

highest coverage. hHGN performance drops to near-0 in
Transport, but the same happens for all other learning-based
methods; in Blocksworld and VisitAll, hHGN still excels.
Regarding hSL, the original work on that heuristic (Ferber,
Helmert, and Hoffmann 2020) did not train networks for
the hard tasks as training data generation was expected to
be a bottleneck. Indeed, this is what happens in some do-
mains, especially in Depots, NPuzzle, Rovers, and Storage.
In the other domains, the amount of training data also de-
creases with growing instance size (to varying degrees). Yet
in some cases – Depots, Grid, Pipesworld-NoTankage, and
Scanalyzer – the data is still sufficient to learn useful heuris-
tic functions. As before, LAMA is outperformed in Storage
where all our three RL techniques have higher coverage; the
only significant advantage now is for hBoot though.

Given our comparatively large search time limit of 10
hours, Figure 1 shows coverage as a function of runtime. We
show results for moderate tasks in four domains; the data is
qualitatively similar in the other domains and tasks.

Comparing different NN heuristics, the general finding is
that coverage superiority persists over any time limit. With
few exceptions, an approach that is better after 30 minutes
is still better after 2 or more hours. The picture with re-
spect to LAMA is different, as LAMA (like all state-of-
the-art model-based heuristic search planners) tends to solve
a task either quickly or not at all. With its comparatively
fast heuristic functions, LAMA quickly runs up against the
memory limit. The NN heuristic functions in contrast are
very slow (run on a single core!), and thus require some time
to “catch up” with LAMA. They still solve additional tasks
even after very long run-times, and relative performance dif-
ferences become more pronounced over time. In particular,
the advantages over LAMA in Storage grow as a function of
the run-time limit.

8.4 Informedness
Let us finally compare informedness across the different ap-
proaches, measured in terms of the number of expansions.
Figure 2 shows the distribution of expansions per domain,
for commonly solved tasks. In each domain we ignore algo-
rithms that solve less than 10% of the tasks, as otherwise the

hBoot hBExp hAVI hSL hHGN hFF LAMA

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

(a) pipes-nt

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

(b) rovers

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

(c) visitall

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

(d) storage

Figure 1: Coverage (%) as a function of the search time (in hours), on all moderate task for four domains.

hBoot

hBExp

hAVI

hSL

hHGN

hFF

LAMA

102 103 104 105 106 107

(a) blocks

102 103 104 105 106 107

(b) depots

102 103 104

(c) grid

104 105 106

(d) npuzzle

101 103 105

(e) pipes-nt
hBoot

hBExp

hAVI

hSL

hHGN

hFF

LAMA

100 101 102

(f) rovers

101 102 103 104

(g) scanalyzer

102 103 104 105 106

(h) storage

102 103 104 105 106

(i) transport

102 103 104 105 106

(j) visitall

Figure 2: Expansions on commonly solved moderate tasks, removing algorithms with coverage< 10%. In each plot, the middle
lines show the median, the boxes indicate the 25 and 75 percentile, and the whiskers show the 5 and 95 percentiles.

set of commonly solved tasks would become too small.
Again, the primary conclusion from these results is that

the techniques are highly complementary – at a glance, just
consider how the different colors in Figure 2 move to and
fro in the plots. Comparing neural network heuristic func-
tions against each other, hHGN is only well informed in the
3 domains in which it yields high coverage. The comparison
between hSL and our RL methods is similar as for cover-
age, exhibiting performance differences in the same domains
(which is expected as the per-state runtime of these heuristic
functions is very similar). Finally, the NN heuristic func-
tions are quite competitive with hFF and LAMA in terms of
informedness. In Depots, Grid, and VisitAll the lowest num-
ber of expansions is achieved by a NN heuristic function (a
different one in each case); and in Pipesworld-NoTankage,
Rovers, and Scanalyzer, the best NN heuristic function is
basically on par with hFF.

9 Conclusion
We explored how to arrange RL ideas to learn NN heuristic
functions in classical planning, taking only the state as input;
we designed three different methods along these lines (hBoot,
hBExp, hAVI). We conducted an experiment of unprecedented
scope in this area, comparing our RL-inspired methods to
two other NN heuristic function approaches – hSL by Ferber,
Helmert, and Hoffmann (2020) and hHGN by Shen, Trevizan,
and Thiébaux (2020) – including in particular a comparison

between per-domain learning and per-instance learning. The
results show that the heuristic functions are extremely com-
plementary. In particular, hBoot achieves competitive perfor-
mance, outperforming both hSL and hHGN in 4 out of 10 do-
mains. In one domain – namely the single domain where
LAMA has severe performance issues – hBoot even outper-
forms LAMA. To our knowledge, this is just one of two
known successes of an NN heuristic function against LAMA
(the other being by Karia and Srivastava (2021) on the Span-
ner domain from the IPC Learning track). On our other do-
mains though, LAMA still reigns supreme.

The major open question in our view remains whether
and how more reliable performance can be obtained with
NN heuristic functions in planning. As of now, informedness
varies wildly across domains for all methods evaluated here.
One may argue that this phenomenon pertains to virtually
all heuristic functions, but our impression is that this is more
drastic for NN than for model-based techniques. Coverage
rises high vs. drops to rock-bottom for the same method
even in intuitively closely related domains. The same kind
of variance occurs even in multiple training runs on the same
planning task, so that a simple validation method boosts per-
formance. How can we improve this erratic behavior? This
question remains wide open. We speculate that other learn-
ing tasks, closer to the requirements of search than numeric
heuristic values, may help; or perhaps architectures in which
the heuristic function is represented in a neuro-symbolic
manner rather than monolithically through a neural network.

10 Acknowledgments
This work was funded by DFG grant 389792660 as part of
TRR 248 (see https://perspicuous-computing.science), and
by the Swiss National Science Foundation (SNSF) as part
of the project “Certified Correctness and Guaranteed Perfor-
mance for Domain-Independent Planning” (CCGP-Plan).

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Lev-
enberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.;
Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever,
I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.;
Fern; a Viégas; Vinyals, O.; Warden, P.; Wattenberg, M.;
Wicke, M.; Yu, Y.; and Zheng, X. 2015. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems. URL
http://tensorflow.org/.
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence 1: 356–
363. doi:10.1038/s42256-019-0070-z.
Arfaee, S. J.; Holte, R. C.; and Zilles, S. 2011. Bootstrap
Planner: an Iterative Approach to Learn Heuristic Functions
for Planning Problems. In IPC-7 planner abstracts.
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning
Heuristic Functions for Large State Spaces. AIJ 175: 2075–
2098.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Chollet, F. 2015. Keras. https://keras.io. URL https://keras.
io.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A New Systematic Approach to Partial Delete Re-
laxation. AIJ 221: 73–114.
Ferber, P.; Geißer, F.; Trevizan, F.; Helmert, M.; and Hoff-
mann, J. 2021. Code, benchmarks and experiment data for
the PRL 2021 workshop paper “Neural Network Heuris-
tic Functions for Classical Planning: Reinforcement Learn-
ing and Comparison to Other Methods”. https://doi.org/10.
5281/zenodo.5026899.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Net-
work Heuristics for Classical Planning: A Study of Hyper-
parameter Space. In Proc. ECAI 2020, 2346–2353.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Proc. ICAPS 2019,
631–636.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 770–
778. ISSN 1063-6919. doi:10.1109/CVPR.2016.90.

Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26: 191–246.

Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. AIJ 173: 503–535.

Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS 2009, 162–169.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. JACM 61(3): 16:1–
63.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. JAIR 14:
253–302.

Karia, R.; and Srivastava, S. 2021. Learning Generalized Re-
lational Heuristic Networks for Model-Agnostic Planning.
In Proc. AAAI 2021.

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Proc. ICLR 2015.

Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
JAIR 39: 127–177.

Rivlin, O.; Hazan, T.; and Karpas, E. 2020. Generalized
Planning With Deep Reinforcement Learning. In ICAPS
Workshop on Bridging the Gap Between AI Planning and
Reinforcement Learning (PRL), 16–24.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.

Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks. In Proc. ICAPS 2020, 574–584.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature 529(7587): 484–489.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362(6419): 1140–
1144.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou,
I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.;
Bolton, A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den
Driessche, G.; Graepel, T.; and Hassabis, D. 2017. Master-
ing the Game of Go Without Human Knowledge. Nature
550(7676): 354–359.

Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies with Deep
Learning. In Proc. AAAI 2018, 6294–6301.

Yu, L.; Kuroiwa, R.; and Fukunaga, A. 2020. Learning
Search-Space Specific Heuristics Using Neural Network. In
ICAPS Workshop on Heuristics and Search for Domain-
independent Planning, 1–8.

