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Abstract

A large part of the interest in model-based reinforcement
learning derives from the potential utility to acquire a forward
model capable of strategic long term decision making. As-
suming that an agent succeeds in learning a useful predictive
model, it still requires a mechanism to harness it to generate
and select among competing simulated plans. In this paper,
we explore this theme combining evolutionary algorithmic
planning techniques with models learned via deep learning
and variational inference. We demonstrate the approach with
an agent that reliably performs online planning in a set of vi-
sual navigation tasks.

Introduction
The capacity to plan confers an agent several advantages
such as counterfactual reasoning, the evaluation of differ-
ent courses of action or the possibility to prepare for future
contingencies. In order to plan, a model that captures the rel-
evant dynamics of a task or an environment must be acces-
sible. However, for many complex tasks or unknown situa-
tions a model might not be initially available. In these cases
it becomes crucial to learn from experience the necessary
knowledge that could support the planning mechanisms.

Recent advances in the modeling of temporal sequences
through deep learning have generated a renewed interest in
model-based reinforcement learning (MBRL), as a potential
path to acquire a model of the environment in its absence,
and integrating both aspects of the interaction (i.e. learning
and planning) within a broader unified process.

As the capacity to learn more powerful predictive mod-
els increases, the possibility to leverage some of the tools
and techniques that have been developed for planning be-
comes more relevant. Among the recent works in MBRL,
some have relied on Monte-Carlo Tree Search (MCTS)
(Coulom 2006) when the interest is in harnessing a learned
model operating with discrete action spaces (Schrittwieser
et al. 2020), while for continuous action spaces the cross-
entropy method (CEM) (Rubinstein 1999) has been a com-
mon choice for updating the distribution used to sample ac-
tion sequences (Chua et al. 2018; Hafner et al. 2019b). Al-
ternatively, other works have opted for learning RL policies
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from the simulated outputs produced by the model (Hafner
et al. 2019a; Lee et al. 2020).

In this paper we present rolling horizon evolution (RHE)
(Perez-Liebana et al. 2013) as a viable alternative to plan
and guide decision making in discrete action spaces. In par-
ticular, we integrate RHE with state space models (SSM)
learned from raw pixel observations. We verify the perfor-
mance in a set of navigation tasks, where the agent deals
with global or local observation spaces and stochastic ele-
ments.

Rolling Horizon Evolution

Rolling Horizon Evolution (RHE) (Perez-Liebana et al.
2013) is a family of general real-time planning algorithms
with close connections to Model Predictive Control (MPC).
The idea behind RHE is the application of evolutionary algo-
rithmic techniques to action sequences. The process consists
in the random generation ofN action sequences of lengthH
which then are manipulated by genetic operators (e.g. muta-
tion and crossover). Each of the candidate sequences is ex-
ecuted inside a forward model up to the planning horizon
H , unless a termination condition is prematurely triggered.
The sequences are evaluated according to a given heuristic
or score function to obtain their fitness. The evolutionary
process of altering, evaluating and selecting the sequences
is repeated for a G number of generations. Once it is over,
the first action from the highest ranked sequence is executed
in the actual environment and the cycle is repeated.

Although RHE was originally devised, and has often
been used in conjunction with perfect simulators, it can be
adapted to a broader type of situations due to its generality,
as long as it is possible to instantiate a forward model to sim-
ulate and evaluate the rollouts. Naturally, this also implies
that it is largely dependent upon the quality of the model that
it has access to. For the situations that we are concerned in
this manuscript, when a forward model is not initially avail-
able, RHE has been able to interoperate with approximated
or imperfect forward models (Lucas et al. 2019a; Ovalle and
Lucas 2020a,b; Olesen et al. 2020)



Figure 1: Integration of RHE (RMHC version) and a SSM. a) Sample an action sequence. b) Apply genetic operators to generate
candidates. c) Simulate trajectories in latent space by executing each of the sequences and gather their corresponding r2:H+1 to
evaluate them. d) From the selected sequence, the agent takes a1 and executes it in the actual environment.

State Space Models in Model-Based
Reinforcement Learning

One of the most challenging aspects of MBRL is that the
model that is acquired must be sophisticated enough to cap-
ture the dynamics of the environment while being flexible
and robust to potential errors. Some research has focused
on producing faithful reconstructions (Kaiser et al. 2020;
Bamford and Lucas 2020) while others have opted instead
on learning to predict specific aspects of the RL framework
(Schrittwieser et al. 2020) or the environment (Freeman,
Metz, and Ha 2019) that are thought to be necessary to per-
form a particular task.

Regardless of the approach, an agent must deal with the
uncertainty that arises either from its epistemic shortcom-
ings or from stochastic components attributed directly to the
environment. This has motivated the combination of proba-
bilistic modeling with deep reinforcement learning. A par-
ticularly active research direction in MBRL has been to use
variational inference methods for training state space models
(SSM) (Buesing et al. 2018; Hafner et al. 2019b,a; Okada,
Kosaka, and Taniguchi 2020; Lee et al. 2020). The SSMs
(Kalman 1960) are a class of sequential latent variable mod-
els that consider a hidden (i.e. latent) state, here denoted as
s, which summarizes essential aspects of the past.

Let us then consider an environment that at each time step
t generates an output xt sensed by an agent, containing a
visual observation ot and a reward rt. The agent interacts
with the environment by carrying out an action at. Instead
of trying to approximate directly p(xt+1|x≤t, a≤t) the agent
can learn a transition model based on p(st+1|st, at). From
the point of view of planning, this offers the advantage that
during a simulated trajectory it is not a requirement to re-
construct a predicted observation o as the rollout can take
place in the more compact space representation of s, making
the process less computationally demanding. In order to in-
fer the latent states, the agent uses its previous observations
and actions to learn an encoder q(st|o≤t, a<t). In addition,
it also learns the emission model which can be decomposed
into the observation model p(ot|st) and the reward model
p(rt|st).

Recurrent State Space Models
In this paper we focus on a particular kind of SSM char-
acterized in (Hafner et al. 2019b), which splits the hidden
state into two elements. The stochastic state s that allows the
agent to handle model uncertainty by having the capacity to
simulate multiple alternative futures, and the deterministic
state h which is suggested to assist the capacity of the model
to store, access and transport information more robustly. The
deterministic component is implemented through a recurrent
neural network giving the model its name of recurrent state
space model (RSSM). This rearrangement in the structure
of the graphical model brings some differences as we now
have ht = f(ht−1, st−1, at−1) and st ∼ p(st|ht) as depen-
dencies to obtain the observation model p(ot|st, ht) and the
reward model p(rt|st, ht).

Rolling Horizon within SSMs
There have been several enhancements, strategies and hy-
brid formulations proposed in the RHE literature (Horn et al.
2016; Gaina, Lucas, and Perez-Liebana 2017a,b). With the
exception of the shift-buffer, which is explained below, we
try to maintain the underlying planning mechanics as essen-
tial as possible and consider a minimal evolutionary scheme
based on the (1+1) random mutation hill climber (Lucas
et al. 2019b). A single action sequence (at, . . . , at+H) is
uniformly sampled from the space of actions, while the other
N−1 sequences are obtained by mutating this first sequence.
As previously elaborated, the sequences are executed to sim-
ulate a trajectory by instantiating a forward model. To eval-
uate the sequences we use a reward function that takes the
hidden states st, ht and the action at. Nonetheless in prin-
ciple it could be substituted by another utility function or
by intrinsic signals that, for instance, could direct the agent
to regions of the environment where the agent might expect
to increase its knowledge and improve the predictive model
(Ovalle and Lucas 2020b). The evaluation stage can be sum-
marized as,

π(s, h) = argmax
at:t+H∈Pt

E
[
r(st, ht, at)+

H∑
i=1

r(ŝt+i, ĥt+i, at+i)

]
(1)



Figure 2: The environment. The frames show the two type of
observations that an agent can receive. On the left showing
the whole grid and on the right its local neighborhood.

Note that the difference between st and the subsequent
ŝt+1:H is that the former is inferred from current observation
using the encoder. Whereas the latter are generated entirely
in latent space by querying p(st+1:H |ht+1:H). The agent
executes the first action of the highest evaluated sequence
available in the current population Pt. For the next action
instead of replanning from scratch by discarding the previ-
ous plan, RHE applies a shift-buffer by shifting the sequence
one step to the left and appending a random action at the end.
The sequence then is used as the seed and the process is re-
peated again. For the world model we are interested in learn-
ing an approximation to p(o0:T |a0:T ). Thus following stan-
dard variational techniques (Jordan et al. 1999), the RSSM
is trained to maximize the evidence lower bound (ELBO) of
the log likelihood of the model,

ln p(ot:B |at:B) ≥
B∑
t

Eq(st|o≤t,a<t)

[
ln p(ot|st)

−DKL[q(st|o≤t, a<t)||p(st|st−1, at−1)]
]

(2)

Experiments
Environment
We verify the ability of the agent to learn a forward model
while simultaneously being able to search, select and ex-
ecute adequate plans in a top-down grid-based visual task
designed with Griddly (Bamford, Huang, and Lucas 2020).
The environment consists of a 7 × 7 grid corresponding to
168 × 168 RGB pixels. The input that the agent receives is
a rescaled raw pixel observation of 3 × 64 × 64. The en-
vironment is illustrated in the fig. 2 where the agent, repre-
sented by the rat, starts the episode in the upper left corner.
The task is a classic navigation task where the agent must
discover the goal location while avoiding obstacles and pos-
sible sources of early termination. The goal here is given by
the cheese in the lower right corner, if the agent reaches this
position the agent receives a reward of +1 and the episode
terminates. We conduct four variations of the experiment fo-
cusing on two main different aspects of the task. The first of
those, is the inclusion of stochastic features in the environ-

ment. For this version of the task, we include an antagonis-
tic element represented by the spider that moves randomly
throughout the grid. Whenever an encounter between them
occurs, the agent receives a reward of −1 and the episode
terminates. The task also terminates with a reward of −1 if
the agent reaches the hole located in the upper right corner.
For the non-stochastic version of the task the spider is absent
and success or failure conditions are only triggered when the
agent reaches the goal or the hole positions respectively.

The second aspect we explore is the capacity to deal with
global and local observations, and whether the agent can
learn a local forward model that can support decision mak-
ing given the setup. For this variation, the agent visualizes
its surrounding 3 × 3 cell neighborhood as opposed to the
whole grid (fig. 2 right). Accordingly, instead of receiving a
raw pixel input of 3×64×64 it will receive a 3×28×28 ar-
ray. All four tasks have a maximum time limit of 500 steps,
if reached, the episode terminates with a reward of 0 for the
agent.

Technical Details
The agent is trained end-to-end and starts by gathering data
following a random policy for a few episodes to populate the
replay buffer. Then the agent alternates between a learning,
and a planning and acting phase. During the learning phase
the agent samples data from the buffer to train the RSSM,
which entails training the following components:

• an inference model st ∼ qφ(st|ht, ot).
• the deterministic ht = fRNNθ (ht−1, st−1, at−1) and

stochastic st ∼ pθ(st|ht) components.

• the observation ot ∼ pλ(ot|ht, st) and the reward model
rt ∼ pξ(rt|ht, st).
The whole neural network architecture is trained to max-

imize the ELBO via stochastic gradient variational infer-
ence (Kingma and Welling 2014; Rezende, Mohamed, and
Wierstra 2014). During the planning phase the agent queries
the approximate forward model that it currently possesses
by observing ot and inferring {st, ht}. All the observations
gathered during the episode are also stored in the buffer for
subsequent learning phases. The appendices contain addi-
tional details about the architecture deployed during the ex-
periments.

Results
Deterministic For the deterministic version of the envi-
ronment both agents have comparable task performance in-
dependently from whether the observations they receive are
global or only restricted to its immediate neighborhood.
Both agents achieve proficiency early during training, how-
ever the agent that receives local observations achieves it
more efficiently as it uses less steps. Although later during
training, both agents use an equivalent number of steps to
reach the goal. During the analysis of the behavior of the
agent, it was observed that it achieved competence in the
task well in advance of learning how to reconstruct accu-
rately its environment. This suggests that the latent repre-
sentations learned by the agent prioritize the encoding of
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Figure 3: Performance in the task during 500 episodes. The plots show mean and standard deviation over three seeds. The
left shows the performance of the agent when it observes the whole grid, while on the right the agent only observes its local
neighborhood.

features relevant for reaching (or avoiding) favorable (or un-
desirable) states and this might not necessarily have a per-
ceptible graphical translation (fig. 4 top). That is, the use-
fulness of a model should not be dictated by its capacity to
replicate the environment with meticulous precision.

Stochastic When the environment included an stochas-
tic element, the agent that only receives local observations
again exhibited higher initial responsiveness. However on
the long term it is the agent with a more global forward
model that is able to carry out plans with a higher chance
of succeeding. Analyzing the behavior of the agent and the
model reconstruction offered potential insights and interpre-
tations. The agent that receives global observations seems
to develop an initial aversion towards moving to the rest of
the grid, instead preferring to move only vertically to remain
close to the starting position and behind the blocks. During
these earlier stages the plans executed by the agent seem ex-
clusively intended to avoid encounters with the enemy. Since
this element is a defining factor into whether the agents suc-
ceeds or not in the task, it is perhaps until the model attempts
to capture more of the dynamics of the agent with respect to
the spider that it starts executing plans to move towards other
positions in the grid and eventually towards the goal. In con-
trast, the agent that operates with local observations does not
have a continuous necessity to model the location or dynam-
ics of the spider, as most of its observations do not contain it
and thus favors less conservative plans. As previously men-
tioned, later during training it is the agent operating with a
global model the one that attains the goal more reliably, as
it has learned to consider more complex dynamics used to
avoid the spider. Overall these initial assessments motivate
a further elucidation of the relation between relevance and
representations, observations and objectives.

Discussion
The design of architectures based on SSMs has grown in in-
terest within MBRL due to the temporal structure and the
consideration of a latent space that are intrinsic to the for-

malism. The latter is not only important for filtering out non-
essential elements of the interaction between the agent with
the environment but also for the acquisition of economical
and compact representations that can facilitate a more ex-
pedite decision making. In this paper we presented how to
harness these representations to support real-time planning
in discrete action tasks via RHE. Although these planning
techniques have largely been developed for tasks where the
access to a perfect simulator is assumed, the principles are
general enough that can be extended as long as the signals
predicted by the model are sufficiently reliable to allow RHE
to evaluate competing plans.

An aspect that facilitated the integration is the modular-
ity of both components. In RHE the generation of the action
sequences occurs independently from their evaluation, and
in the RSSM learning the transition model remains partially
separated from learning the reward model. This implies that
after the sequences of latent states have been gathered they
can be evaluated concurrently. This is specially significant
for search-based algorithms that must balance time and com-
putational constraints with the capacity to evaluate a large
number of potential plans. Another affordance granted by
this modularity is that the sequences of latent states could be
reused by RHE to invoke on demand other components in
the architecture that could predict additional signals to assist
during the evaluation.

From the point of view of the architecture, compared with
muzero (Schrittwieser et al. 2020) or imagination-based RL
(Hafner et al. 2019a; Lee et al. 2020), the approach presented
here only requires training the SSM and not additional com-
ponents such as a policy or a value network. This could be
preferred from a computational perspective depending on
the circumstances. Nonetheless there are no structural ob-
stacles to incorporate additional networks or to use learned
value functions within the evaluation criteria of RHE, and
indeed it could be particularly beneficial for more complex
tasks. Exploring these ideas and establishing these compar-
isons more formally could be expanded in future work.
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Appendix
Reconstructions

Figure 4: Examples of actual (left column) and reconstructed
(right column) frames. Top: the agent is able to solve the
task even before an accurate visual reconstruction can be
extracted from the internal model. Middle: example of the
agent performing and modelling the task. In this case, the
spider serves as an stochastic element in the environment.
Bottom: an agent acting in the environment and modelling
its local neighborhood.

Architecture
Observation embedding A 3× 64× 64 or a 3× 28× 28
array, for the global and local case respectively, is passed
through a four-layer convolutional network with output sizes
of 32, 64, 128 and 256, kernels of 4 × 4 and stride 2. The
exception is when the network receives a local observation,
if that occurs, the kernel in the last convolutional layer is of
size 1. All the activation functions are ReLU. The output is
passed further to a linear layer to produce an embedding of
size 200.

Transition model An embedding of the stochastic state,
action and deterministic state is passed through a GRU to
obtain the next deterministic state. The next stochastic state
is sampled by applying the reparameterization trick.

Observation model For decoding an observation an em-
bedding of the latent states is passed through a deconvolu-
tional network with four layers with outputs 128, 64, 32 and
3, kernels 5, 5, 6 and 6, and stride 2 for global observations.
For local observations the kernels are 2, 3, 5 and 4. ReLU is
used for all activation functions.

Reward model The embedding of the latent states is
passed through a three-layer feed forward neural network
with hidden size 200 and ReLU activation functions.

Training
The architecture is trained end-to-end combining a testing
stage, in which the agent acts in the environment for one
episode, and a training stage. For the latter, the SSM archi-
tecture is trained for 100 epochs from data sampled from
the buffer that contains the observations that have been col-
lected by the agent. The architecture is trained to maximize
the ELBO via stochastic gradient descent using the Adam
optimizer.

Hyperparameters

Training
Learning rate 6e-4
Epsilon 1e-4
Grad clip norm 1000
KL weight 0.1
Free nats 3
Epochs 100

Embeddings
Observation 200
Deterministic 200
Stochastic 32

Replay buffer
Buffer size 1e6
Seed episodes 5
Batch size 50
Batch sequence size 20

Planning
Planning horizon 20
Candidates 300
Mutation rate 0.5
Shift-buffer True
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