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Abstract

Deploying reinforcement learning (RL) involves major con-
cerns around safety. Engineering a reward signal that allows
the agent to maximize its performance while remaining safe
is not trivial. Safe RL studies how to mitigate such problems.
For instance, we can decouple safety from reward using con-
strained Markov decision processes (CMDPs), where an in-
dependent signal models the safety aspects. In this setting,
an RL agent can autonomously find tradeoffs between perfor-
mance and safety. Unfortunately, most RL agents designed
for CMDPs only guarantee safety after the learning phase,
which might prevent their direct deployment. In this work,
we investigate settings where a concise abstract model of the
safety aspects is given, a reasonable assumption since a thor-
ough understanding of safety-related matters is a prerequisite
for deploying RL in typical applications. Factored CMDPs
provide such compact models when a small subset of features
describe the dynamics relevant for the safety constraints. We
propose an RL algorithm that uses this abstract model to learn
policies for CMDPs safely, that is without violating the con-
straints. During the training process, this algorithm can seam-
lessly switch from a conservative policy to a greedy policy
without violating the safety constraints. We prove that this
algorithm is safe under the given assumptions. Empirically,
we show that even if safety and reward signals are contradic-
tory, this algorithm always operates safely and, when they are
aligned, this approach also improves the agent’s performance.

Publication. This is an extended abstract of a paper pub-
lished at AAMAS-21 (Simão, Jansen, and Spaan 2021).

Introduction
Despite the astonishing successes in Reinforcement Learn-
ing (RL) (Sutton and Barto 2018), unsafe exploration still
prevents its deployment to real-world tasks (Amodei et al.
2016). This issue has motivated the study of constrained
RL to ensure safety (Dulac-Arnold, Mankowitz, and Hester
2019). In this framework, an agent interacts with an envi-
ronment modeled as a Constrained Markov Decision Pro-
cess (CMDP) (Altman 1999) without knowledge about the
transition, reward, and cost functions. In safe RL (Garcı́a
and Fernández 2015), the cost function is used as a proxy to
distinguish between safe and unsafe behaviors. Therefore,
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Figure 1: Left: Factored CMDP M with a safety signal c.
Right: Abstraction M̄ ignoring features irrelevant for safety.

the agent must find a policy with maximum expected reward
among the safe policies, those with expected cost smaller
than a safety threshold.

Constrained RL algorithms often focus the settings where
the agent trains in an assumed perfect simulator and only
cares about safety later, when deployed in the real environ-
ment. We focus on a setting where the agent interacts di-
rectly with the environment and is not allowed to violate the
safety constraints while learning.

To provide safety guarantees, one must make some as-
sumptions (Wachi and Sui 2020). We observe that often
most of the state description is only relevant for the reward
signal and does not influence the safety of the agent. Fig-
ure 1 shows an example of such situation, where the feature
x0 does not influence the cost function. In this setting, it
can be easy for an expert to define the dynamics relevant
for safety. Such constraints may be represented in a compact
model and are a prerequisite for deploying RL. Hence, we
assume that this compact model is known and is represented
by an abstract CMDP M̄. This assumption allows the agent
to explore, but always within the set of safe policies.

Our contribution is four-fold: (i) we study the kind of ab-
straction sufficient to concisely describe and distill safety
dynamics. Using factored MDPs (Boutilier, Dearden, and
Goldszmidt 1995), (ii) we devise an example of such ab-
stract model. Assuming such model is given, (iii) we pro-
pose the AlwaysSafe algorithm, that learns an optimal
policy for the CMDP without violating the constraints. Fi-
nally, (iv) we show that this algorithm is always safe and has
no regrets in terms of constraint violation
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Figure 2: Search for a ground policy that respects the con-
straints in all CMDPs from the uncertainty set Ξ. The x-axis
indicates the expected cost and the y-axis the frequency we
can find a CMDP in Ξ for which the policy computed has
that expected cost.

Background

Different algorithms have been proposed for constrained
RL, one example is the OptCMDP algorithm (Efroni, Man-
nor, and Pirotta 2020). This is a model-based algorithm fol-
lowing the optimism in the face of uncertainty principle, so
it computes a policy optimistically with respect to a uncer-
tainty set Ξ that contains the true underlying CMDP with
high probability. This algorithm has bounded performance
regret as well as bounded safety regret.

Unfortunately, the OptCMDP algorithm may still violate
the constraints during the early episodes, since it lets the
agent explore unknown parts of the environment, making
its deployment to real-world tasks infeasible. Next, we pro-
pose a RL algorithm that can learn without violating the con-
straints, so it can be used in the true RL setting.

Method

This work has a novel perspective on the use of abstrac-
tions. While prior work usually focuses on computing a pol-
icy on M̄ that maximizes the expected return in the ground
CMDP M. Our approach, uses M̄ to compute an abstract
policy πA that is safe for deployment in M. Unfortunately
this policy may be suboptimal, since M̄ may ignore features
relevant for the reward function. Therefore, we still need a
ground policy to eventually achieve optimal behavior.

To find a safe ground policy, we propose to dynamically
tight the safety constraints, resulting in increasingly conser-
vative policies. Initially, we compute a ground policy πG and
test if it is safe for all CMDPs on the uncertainty set Ξ. If πG
is not safe, we reduce the safety threshold and compute a
new ground policy that is more conservative. This process is
repeated until a ground policy that is safe in all CMDPs in Ξ
is found, or until the problem becomes infeasible, in which
case use deploy the abstract policy πA to collect more data.
This reduces the size of the uncertainty set, which allows us
to eventually find a feasible ground policy.

Figure 2 demonstrates a successful search for a safe
ground policy using this strategy. The first three plots shows
how the cost bound ĉi changes over the iterations and the
last plot shows one of the stopping conditions of the algo-
rithm, when the policy computed according to ĉn respects
the original constraints in all CMDPs in Ξ.
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Figure 3: Safety and performance regret of the policy exe-
cuted in each episode.

Empirical Analysis
The empirical analysis (Figure 3) considers the cliff walk-
ing environment with a cost for walking close to the cliff
(Lee et al. 2017). It showcases the capabilities of the
AlwaysSafe algorithm: (i) it respects the constraints dur-
ing training, showing no safety regret; (ii) it eventually
achieves optimal performance since at the end of training it
has no performance regret; and (iii) when the cost function
is aligned with the reward it reduces the performance regret.

Conclusion
This work considers settings where safety-relevant dynam-
ics are given. We proposed the AlwaysSafe algorithm, that
can be optimistic with respect to the reward, while ensuring
safety at all times.

In particular, we used an abstract version of the safety-
relevant dynamics to compute an abstract policy that is al-
ways safe and a ground policy that can achieve high perfor-
mance. We showed how to switch between these two poli-
cies to find an algorithm that is safe and eventually con-
verges to the optimal policy. This method not only enforces
the agent to always act safely, but can also prune under-
performing actions, improving the training efficiency when
the cost function is aligned with the reward function.

In summary, the proposed algorithm is always safe during
learning, eventually reaches the optimal policy; and decou-
ples exploration from safety issues in RL.
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