
First-Order Function Approximation for Transfer Learning in Relational MDPs

Jun Hao Alvin Ng1,2, Ronald P. A. Petrick1

Edinburgh Centre for Robotics
1Department of Computer Science, Heriot-Watt University

2School of Informatics, University of Edinburgh
Edinburgh, Scotland, United Kingdom
{Alvin.Ng, R.Petrick}@hw.ac.uk

Abstract

Planning problems with a first-order structure can be mod-
elled compactly with Relational Markov Decision Processes
(RMDPs). If the model is unknown, value-based reinforce-
ment learning methods can be used to solve these prob-
lems. The action-value function is approximated with fea-
tures which are conjunctive ground state fluents. However,
this approximation does not exploit the first-order structure
of RMDPs and the generated policy can only solve a ground
MDP of the RMDP. Our objective is to learn a generalised
function approximation which induces a policy that can solve
multiple ground MDPs. We achieve this by using conjunc-
tive lifted state fluents as first-order features. This first-order
approximation gives better generalisation but has a coarser
granularity which can worsen performance. We propose the
combination of first-order features and ground features to get
both of their strengths. Empirical results for four domains
show that our method could generalise over problems regard-
less of their scales and allow transfer learning.

Introduction
Intelligent agents capable of learning are desired for their
adaptive behaviour and ability to solve planning problems
given little prior information such as the underlying mod-
els specifying the dynamics between an agent and its en-
vironment. Reinforcement learning (RL) (Sutton and Barto
2018) is a powerful approach to tackle such problems: an
agent acts in the environment and learns from the result-
ing observations to improve subsequent reasoning. Sample
complexity, the amount of observations required to achieve
near-optimal behaviour, is usually high in large scale plan-
ning problems. However, if the problems are structured, then
generalisation could reduce sample complexity by applying
learned knowledge to unseen situations similar to observed
ones. The problem is abstracted in a relational representa-
tion and traditional RL methods, possibly with some modi-
fications, are applied to the abstracted problem.

We focus on online RL for problems represented with Re-
lational Markov Decision Processes (RMDPs). The action-
value function, or Q-function, is approximated by project-
ing the state space into a lower dimensional space using a

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

set of features. We utilise an existing online feature discov-
ery algorithm, iFDD+ (Geramifard, Dann, and How 2013),
to incrementally construct sets of conjunctive state fluents
as features to reduce the value approximation errors. Since
state fluents are predicates ground over objects, problems
with different objects or numbers of objects are represented
by different sets of state fluents. Therefore, generalisation
is not possible. Instead, we use conjunctive lifted state flu-
ents, or first-order features, to approximate the Q-values of
lifted actions rather than ground actions. The feature space
for this relational or first-order approximation is identical
for all ground MDPs constructed from a RMDP. Thus, gen-
eralisation and knowledge transfer is possible. However, the
state abstraction increases: more states are partitioned into a
region where they are considered the same for the purpose of
value approximation. When this is not the case, performance
can deteriorate.

This paper presents two main contributions. First, we
represent the function approximation with first-order fea-
tures which allows generalisation and transfer learning over
different planning problems independent of the objects,
number of objects, initial states, and goal states. Second,
we combine the strengths of first-order approximation and
ground approximation by considering a policy induced by
their function approximations. We assume that precondi-
tions are known for action selection and an illegal action will
never be selected. The learning problem is to learn a first-
order function approximation which induces a generalised
policy that could solve multiple different planning problems.

The rest of the paper is organised as follows. First, we
review related work on solving RMDPs and present the nec-
essary technical background. Next, we describe our method
in detail. We then present an ablation study of our method on
four domains. Lastly, we conclude and discuss future work.

Related Work
Large scale planning problems can be solved efficiently
by exploiting first-order representations such as RMDPs
(Wang, Joshi, and Khardon 2008; Van Otterlo 2005). There
are broadly two types of methods: those which assume
the transition function and reward function are known, and
those which do not. Our work is a model-free relational
RL method which performs online feature discovery using

iFDD+ (Geramifard, Dann, and How 2013), and is more
closely related to the latter. Morales (2003) defines abstract
actions (r-actions) and abstract states (r-states) in a relational
representation, then uses a modified Q-learning to learn poli-
cies based on the induced relational abstract state-action
space. Some domain knowledge is required to define the
r-states. Guestrin et al. (2003) samples ground MDPs of a
RMDP and solves them with linear programming to learn a
generalised, class-based value function; objects in the MDPs
are classified into classes with supervised learning. Van Ot-
terlo (2004) creates an abstract MDP of the underlying
RMDP with the use of background knowledge, then solves
the abstract MDP with modified Q-learning and prioritized
sweeping. Mausam (2003) and Džeroski, De Raedt, and
Driessens (2001) partition the state space into finer regions,
each of which has a real-value representing the Q-value, us-
ing relational regression trees. Wu and Givan (2005) per-
forms supervised learning of relational features, represented
as decision trees, by adding features which correlate well
to the Bellman error of value functions. Similarly, Croonen-
borghs et al. (2007) learns a relational CPD and a relational
reward function online, represented with relational decision
trees, and uses planning techniques with the learned mod-
els to provide better estimates of the Q-values. A decision
tree is sensitive to the order of node splitting, rendering this
work ill-suited in online RL where later observations yield
new information which might necessitate the reconstruction
of the trees. Ramon, Driessens, and Croonenborghs (2007)
proposes a tree restructuring operation but requires statistics
to be stored for every node.

We use conjunctive features similar to SVRRL (Sanner
2006) which has no such issues. SVRRL represents a value
function with a relational naive Bayes net and learns both
the values and structure of the network. It utilises a dis-
tance metric to generalise over handcrafted non-binary rela-
tional features. Likewise, RIB (Driessens and Ramon 2003),
which uses instance-based learning where selected observed
examples are stored, requires a distance metric to compute
Q-values of unseen state-action pairs. Our work uses state
fluents as binary features and does not require any distance
metric to be defined. In these aspects, (Walker 2004) and
(Wu and Givan 2007) are most similar to our work. The
former selects features stochastically with the use of prior
training data while we discover features online. The latter
uses features with one free variable and approximates the
value function while our features can have any number of
free variables and we approximate the Q-function.

Preliminaries

Markov Decision Process (MDP). MDPs model fully-
observable problems with uncertainty. A finite-horizon
MDP is a tuple of the form (S,A, T,R, s0, H, γ) whereS is
a set of states,A is the set of actions, T : S×A×S → [0, 1]
is the transition function, R : S ×A→ R specifies rewards
for performing actions, s0 is the initial state, H is the plan-
ning horizon, and γ is the discount factor. We use symbols
with boldface to indicate sets. MDPs are described explicitly
by expressing T with a transition matrix for each action. For

large state-action spaces, it is impractical to represent T with
transition matrices. Factored MDPs (Boutilier, Dearden, and
Goldszmidt 2000) represent a state s with a set of state vari-
ables P where s = {pi}|P |i=1. If the transition of pi depends
only on a small number of state variables P̄ ⊂ P , then
T can be represented compactly by dynamic Bayesian net-
works (DBN). The conditional probability function (CPF)
for pi can be expressed as T (pi' |P , a) = T (pi' | P̄ , a)
where pi' is the variable at the next time step and a ∈ A.

Relational Markov Decision Process (RMDP). A RMDP
(O,P ,S,A, T ,R, s0, H, γ) is a first-order representation
of a factored MDP. O is a set of objects, each associated
with a type, P is a set of state predicates over objects, S is
a set of all possible state specifications over O and P , A
is the set of all possible instantiated actions, T : S ×A ×
S → [0, 1] is the transition function, and R : S × A →
R is the reward function. Each predicate is applied over a
type-consistent tuple of objects. Therefore, different ground
MDPs can be constructed from a RMDP given different sets
of objects O. If generalised policies for a RMDP can be
found, then these policies can be used directly to solve any
ground MDPs resulting from this RMDP.

Relational Dynamic Influence Diagram Language
(RDDL). RDDL (Sanner 2010) is a planning language
for describing RMDPs and is used in recent International
Probabilistic Planning Competitions (IPPC) (Sanner 2011;
Grzes, Hoey, and Sanner 2014). Semantically, RDDL
describes DBNs extended with an influence diagram.
RDDL domain and problem files are given as inputs to a
planner. The domain file specifies object types, non-fluents,
fluents, CPFs, and a reward function. Fluents (non-fluents)
are state variables that change (do not change) with time.
The problem file specifies objects, initial state, and values
of non-fluents. A domain can have different problems. We
refer to non-fluents, fluents, and predicates interchangeably
unless necessary to differentiate between them. RDDL
models parallel effects. In contrast, PPDDL (Younes
and Littman 2004), another planning language, models
transitions with correlated effects.

Reinforcement Learning (RL). When the transition func-
tion and reward function are not known, RL can be used
for sequential decision-making. The sample complexity of
an RL algorithm is the number of observations needed to
achieve near-optimal results. The learning objective is to
find a policy π which maximises

∑H
t=0 γ

trt where rt is
the immediate reward received at time step t. π is generated
from the Q-function where the Q-value is given as:

QπH(s, a) = Eπ

[
H∑
t=0

γtrt

∣∣∣∣ s0 = s, a0 = a

]
. (1)

Temporal Difference (TD) learning methods update
their estimates of the Q-function given observations
(st, at, rt, st+1). TD(λ) methods average over n-step returns
by using eligibility traces where λ is the trace decay. The up-
date rule for the Q-function is given by:

Qt+1(st, at) = Qt(st, at) + αδtet(st, at), (2)

δt = rt + γQt(st+1, at+1)−Qt(st, at), (3)

where α is the learning rate, et(s, a) is the eligibility trace
for (s, a), and δt is the TD error.

Linear Function Approximation. The Q-function can be
approximated by linear functions of the form Qθ(s, a) =

θTΦ(s, a) to reduce the dimensions of the state spaces (Sut-
ton and Barto 2018). The set of features Φ(s, a) maps (s, a)
to a vector of real numbers. The goal is to find the set of
features and weights so that Qθ closely approximates the
optimal Q-function. The update rule for the i-th component
of the weight vector θ at time step t is:

θit = θit−1 + αδt
φi(st, at)

||Φ(st, at)||1
, (4)

where the normalization factor is the L1 norm. Φ (we omit
s and a for brevity) partitions the state space into regions
such that states in a region are considered the same for the
purposes of approximating the Q-values. The coverage of a
feature is the region of the state space for which the feature
evaluates to 1 (or non-zero for non-binary features) (Gerami-
fard et al. 2013b). Features with low coverage give fine gran-
ularity in approximation and thus have better accuracy than
features with high coverage. This impacts the soundness of
policies. On the other hand, features with high coverage of-
fer better generalisation as learning is done over a smaller
number of partitions of the state space.

Online RL with First-Order Approximation
In this work, we propose a first-order linear function ap-
proximation of the Q-function to induce a generalised de-
terministic policy which can directly solve multiple ground
MDPs constructed from a RMDP. We use first-order fea-
tures which are conjunctive lifted state fluents. New fea-
tures are added incrementally to the set of features Φ to
reduce the approximation errors. A first-order feature must
be fully ground in order to map (s, a) to a real value. How-
ever, there may exist several possible substitutions to ground
a first-order feature. We utilise contextual knowledge and a
selection criteria to reduce the set of possible substitutions.
Compared to a ground approximation, where features are
conjunctive ground state fluents, a first-order approximation
has a coarser granularity which could deteriorate perfor-
mance. We combine the strengths of both approximations
in a mixed approximation. In this section, we elaborate on
the aforementioned approaches and issues.

First-Order Function Approximation
A linear function approximation of the Q-function, Qθ, can
be used to evaluate the Q-values of actions in a problem
with state-action space S ×A if the set of features Φ maps
(s, a) to a real value for every s ∈ S and every a ∈ A.
This implies that for every φf ∈ Φ, φf ⊆ s∀s ∈ S. Qθ
can be applied to any problem with the state-action space
S ′ ×A′ where S ′ ⊆ S and A′ ⊆ A. This poses two lim-
itations. First, transfer learning from a small scale problem
to a large scale problem is not possible; this is a common

Algorithm 1: Initialise a set of first-order features
for a lifted action

11 Function GET LIFTED FEATURES(P ,Aâ):
2 Φâ = ∅
3 for a ∈ Aâ do
4 Φa ← GET GROUND FEATURES(P , a)
5 Φâ ← Φâ ∪ LIFT

(
Φa, σa

)
6 return QUANTIFIED

(
Φâ

)
motivation for transfer learning as learning is more efficient
in a smaller state-action space. Second, non-fluents are in-
variants of a state. Thus, two problems with different non-
fluents have non-overlapping state spaces and generalisation
between them is not possible. Given these limitations, we
propose a first-order approximation with a set of first-order
features which is independent of the objects in O and the
ground non-fluents.

We instantiate a set of first-order features for each lifted
action â, Φâ, instead of every ground action1; otherwise,Qθ
will not be independent of O because ground actions are
defined over O. This is shown in Algorithm 1. The inputs
are the set of state fluents P and the set of ground actions
for â, Aâ. For each ground action a ∈ Aâ, a set of ground
features Φa is initialised (GET GROUND FEATURES in line
4). In this work, this is the set of every state fluent and non-
fluent, as well as their negation. Each feature φf ∈ Φa is
lifted in accordance with the substitution of a, σa (LIFT in
line 5). For example, σa = {?arg1/x, ?arg2/y} grounds
a(?arg1, ?arg2) to a(x, y)2. A feature might be partially
lifted if it contains objects which are not in the arguments
of a. Φâ is the union of these partially or fully lifted fea-
tures for each a ∈ Aâ (line 5). Remaining objects in Φâ are
substituted with free variables to yield a set of fully lifted,
or first-order, features (QUANTIFIED in line 6). In contrast
with bound variables which are ground with objects in the
arguments of actions, free variables can be ground with any
object of the same type.

Φâ is independent of O and the number of objects in a
problem. Thus, a first-order approximation can be applied to
different problems even with different scales. A first-order
feature must be fully ground before it can map (s, a) to a real
value. First, the substitution σa is applied. The features are
not fully ground if there are free variables. The set of possi-
ble substitutions for Φâ,σΦâ

, consists of every combination
of objects for the free variables. We discuss the grounding of
first-order features in a later part of this section.
Example 1 (Recon domain). We use the Recon (RC) do-
main from the IPPC (Sanner 2011) as an example. In RC,
an agent moves in a 2-dimensional grid with the action
move(?pos) where there is a base, some hazard, and objects
(represented by the variable ?obj) in different grid positions
?pos. The agent (?agent) is equipped with three different
tools (?tool) which it can use on objects with the action
useToolOn(?agent, ?tool, ?obj) to different effects if the

1We use ̂ to denote a lifted fluent or a set of lifted fluents.
2We use ?arg to represent a variable of type arg.

agent and the object (?obj) are at the same position. A tool
can be damaged (damaged(?tool)) if the agent is at a hazard
or is adjacent to it. The probability of getting a good reading
from a damaged tool is lower. The agent can repair a tool
if it is at the base with the action repair(?agent, ?tool).
The position of the agent is represented by the state flu-
ent agentAt(?agent, ?pos) and the position of an object,
which does not change, is represented by the non-fluent
OBJECT AT(?obj, ?pos)3. In a problem instance of RC with
n × n grid, there are n2 objects of type pos and the agent
can be in n2 locations which are represented by n2 ground
state fluents of agentAt(?agent, ?pos). These are used as
features in a ground approximation. Thus, a ground approx-
imation is dependent on O and the number of objects in O.
This does not allow generalisation to another problem in-
stance with a different grid size.

Example 2 (First-order approximation). Follow-
ing Example 1, the n2 ground state fluents of
agentAt(?agent, ?pos) are represented by two
first-order features, agentAt(?agent, ?pos) and
agentAt(?agent, !pos), for the action move(?pos) re-
gardless of the size of the grid4. Thus, a first-order
approximation is not dependent on O and the number
of objects in O, and generalisation to another problem
instance with a different grid size is possible.

Learning Conjunctive Features
The set of first-order features is initialised with Algorithm
1 where each feature is a lifted state fluent. This is often
inadequate in approximating the optimal Q-function. More
complex features, which are conjunctive state fluents, can be
added to Φ to reduce the approximation errors. For this pur-
pose, we utilise iFDD+ (Geramifard, Dann, and How 2013),
a model-free, online feature discovery algorithm. We pro-
vide iFDD+ with an initial set of features. For a first-order
approximation, this is generated with Algorithm 1. For a
ground approximation, this is generated with line 4 in Al-
gorithm 1 (GET GROUND FEATURES). Then, iFDD+ adds
candidate features to Φ if their cumulative approximation er-
rors, or relevances, exceed a user-defined threshold ξ. Since
the set of candidate features, Φc, consists of features which
are the conjunction of any two features (its parent features)
in Φ, this in turn introduces increasingly complex features
to Φc. The relevance of a feature φf at time step t is:

ηt(φf) =

∣∣ ∑t
i=0,φf (si,ai)=1 δi

∣∣√∑t
i=0,φf (si,ai)=1 1

. (5)

Equation 5 is based on the relation of iFDD+ to orthogonal
matching pursuit algorithms. We refer readers to (Gerami-
fard et al. 2013a) for further details. The features are binary:
φf (s, a) = 1 if φf is active in s and 0 otherwise. A feature
is active if it is true in the state and is not a parent feature of
any active feature.

3We use lowercase (uppercase) letters for the names of fluents
(non-fluents).

4We use !pos to denote a free variable of type pos.

Contextual Grounding
The set of first-order features Φ can be ground in several
possible ways if at least one of its features φf have one or
more free variables. The number of possible substitutions
for φf and for Φâ are:

|σφf | =
∏

v∈vφf

|v|, (6)

|σΦâ
| =

∏
φf∈Φâ

|σφf |, (7)

respectively, where vφf is the set of free variables in φf and
|v| is the number of objects of the same type as the free vari-
able v. If we impose a constraint that a free variable must
be substituted with the same object for every feature in Φâ,
then the number of possible substitutions is:

|σΦâ
| =

∏
v∈vΦâ

|v| (8)

where vΦâ
=
⋂
φf∈Φâ

vφf . The selection of a substitution
is crucial as it influences the Q-values, the step update of
θ (see Equation 4), and feature discovery—we refer to this
issue as the grounding ambiguity.
Example 3 (Number of groundings). In RC, |σφf | =
|obj| × |pos| for φf = OBJECT AT(!obj, !pos). In a
problem with 5 objects and 4 × 4 grid, for â =
useToolOn(?agent, ?tool, ?obj), |σΦâ

| ∼ 450× 1015 (for
Equation 7) or 288 (for Equation 8).

We can consider every possible substitutions σΦâ
by ap-

plying an element-wise logical OR operation on the set of
vectors of real numbers resulting from the grounding of
Φâ with σ (Φσ

â) for every σ ∈ σΦâ
. Semantically, a first-

order feature φf is true in a state s if there exists a substi-
tution which makes it true in s. However, φf would then
be true in many states (e.g., in RC, pictureTaken(!obj)
will be true if the agent has taken a picture of any object).
This gives a function approximation with coarse granularity
which can deteriorate performance. We discuss this in detail
in the Granularity of First-Order Approximation section. To
remedy this, we propose the use of contextual knowledge to
eliminate substitutions in σΦâ

which conflict with substi-
tutions due to contextual knowledge. Two substitutions are
conflicting if they substitute a variable with different objects.
We introduce two forms of contextual knowledge which re-
quire trivial domain knowledge to obtain: goal and location.

Goal Context. Goals G are represented by state fluents
which can be trivially determined from either the reward
function or the definition of terminal states, both of which
are commonly assumed to be known in RL problems. We
consider every unachieved goal g for contextual grounding.
Then, the set of substitutions due to goal context is defined
as σgoal =

⋃
g∈G σgoal=g where σgoal=g is the contextual

grounding due to g. We assume that achieved goals do not
affect the policy in the present and future. The Q-values then
represent the expected values of actions for achieving these
goals. This is similar to the goal-associated Q-function in

(Veeriah, Oh, and Singh 2018) but is not the same as addi-
tive rewards as defined in (Sanner and Boutilier 2012) where
each goal is assumed to contribute uniformly and additively
to the reward.

Example 4 (Determine state fluents for goal context). In
RC, a reward of 20 (−20) is obtained for taking a good (bad)
picture of an object. The state fluent pictureTaken(?obj)
represents the fact that the picture of the object ?obj has
been taken. A terminal state is reached if the agent has taken
pictures of all objects. The goals are the set of ground state
fluents for pictureTaken(?obj) for every object of type
obj. Following Example 3, using σgoal=pictureTaken(o1) =
{!obj/o1}, |σΦâ

| is reduced from 288 to 48.

Location Context. In some domains, agents move in an en-
vironment and a state fluent represents the location of the
agent. If the problem has a factored transition function, as is
the case in RMDPs, we can assume that the agent can only
interact with objects in its vicinity. Following this assump-
tion, location context substitutes a free variable with the cur-
rent location of the agent. Location context can be used with
the goal context if there is no conflict (i.e., they substitute
free variables of different types) and this queries if the agent
is at the same location as the goal of interest.

Example 5 (Determine state fluents for location context). In
RC, the agent a1 uses tools on objects which are at the same
location. If the agent is at pos1

(
i.e., agentAt(a1, pos1)

is true
)
, then the contextual grounding due to location

context is σloc = {!pos/pos1}. The first-order features
OBJECT AT(?obj, !pos) and BASE(!pos) are grounded as
OBJECT AT(?obj, pos1) and BASE(pos1) (true if the base is
at pos1), respectively. They query if the agent and the ob-
ject, or base, are at the same location. It is of no interest
whether the object or the base is elsewhere. Following Ex-
ample 3, |σΦâ

| is reduced from 288 to 18. Combined with
σgoal=pictureTaken(o1) = {!obj/o1}, OBJECT AT(!obj, !pos)
is ground to OBJECT AT(o1, pos1). This assumption ex-
ploits the factored state space where the transition of
a state fluent

(
e.g., pictureTaken(o1)

)
depends on a

small number of state fluents
(
e.g., agentAt(a1, pos1) and

OBJECT AT(o1, pos1)
)

which are determined with contex-
tual knowledge. If both goal context and location context are
used, then |σΦâ

| = 3 (i.e, the number of tools, |!tool| = 3).

Selecting a Substitution. Besides the use of contextual
knowledge, we propose a selection method to consider
σM ⊆ σΦâ

for grounding Φâ such that a metric M is max-
imised:

σM = {argmax
σ∈σ

M
(
Φσ
â

)
}. (9)

If contextual grounding is used, it is applied before this se-
lection method. We consider two possible definitions of M :

M
(
Φσ
â

)
= θTΦσ(s, a) = Qθ(s, a), (10)

M
(
Φσ
â

)
=

∑
φf∈Φσ

â

φf (s, a)|φf |2, (11)

where |φf | is the number of state fluents in φf . Equation 10
uses the Q-value for M and is an optimistic evaluation of
Qθ(s, a) following the motivation of optimistic Q-learning
(Sutton and Barto 2018). However, this could introduce in-
stability to an online learning algorithm. Since σM depends
on the Q-values (or weights θ), it might change after θ is up-
dated with Equation 4. This not only invalidates the weight
update but is also unstable as the TD error could increase
rather than decrease after the weight update. Therefore, we
consider the number of active and complex features, defined
in Equation 11, for M .

Granularity of First-Order Approximation
A first-order approximation gives a coarser granularity than
a ground approximation which can cause its performance
to deteriorate. The lifted state-action space, Ŝ × Â, is of-
ten much smaller than the ground state-action space—a
lifted fluent p(?arg1, ?arg2) can be ground in |arg1||arg2|
ways. The maximum number of features is

∑
a∈A |Φa| =

22|P| × |A| in a ground approximation, and
∑
â∈Â |Φâ| =

22|P̂|× |Â| in a first-order approximation. Since |P̂ | ≤ |P |
and |Â| ≤ |A|, a first-order approximation uses fewer fea-
tures to partition the state space5. Therefore, the size of
the partitions (or granularity) in a first-order approximation
must be larger than a ground approximation. Furthermore,
the use of OR increases the coverage of a first-order feature
because there only needs to exist a grounding amongst sev-
eral possible groundings to make the feature true. The coarse
granularity limits the type of problems a first-order approxi-
mation can be applied in. It is suited for problems with fac-
tored transitions and reward functions and with independent
goals. Since features are binary, it is not suited for problems
which require real-valued features. This issue is mitigated in
a ground approximation due to the inclusion of every ground
state fluent as features which serves as implicit counting.
Example 6 (Inter-dependent goals). If the goals in RC are
to take pictures of objects in a particular order, then the first-
order feature pictureTaken(!obj) cannot represent the set
of objects with pictures taken whereas the ground features
(e.g., pictureTaken(o1), pictureTaken(o2), etc.) could.
In other words, a first-order approximation partitions states
in which at least one object has its picture taken into a region
while a ground approximation partitions each of these states
separately. Goal context is crucial in reducing the number of
objects considered for grounding !obj for a finer granular-
ity. This drawback of first-order approximation is resolved
if there is a non-fluent which specifies the dependence of
goals

(
e.g., order(?obj1, ?obj2)

)
. This is the case in the

Academic Advising domain (Guerin et al. 2012) (refer
to the Experiments section for details).
Example 7 (Counting features). Following Example 6, a bi-
nary first-order feature pictureTaken(!obj) cannot func-
tion as a counting feature (i.e., return the number of objects
which has its picture taken). While a ground approximation
also uses binary features, it performs an implicit counting—
since every ground state fluent of pictureTaken(?obj) are

5They are equal if there is one object for each type.

features, if n objects have their pictures taken, then n of
these state fluents are true.

A coarse granularity in the function approximation can
cause plateaus which are regions of the state space where
there are multiple actions with equal maximal Q-values but
not all of them are optimal. A random selection among these
actions is resorted to as a tiebreaker. A straightforward rem-
edy to plateaus is to include non-fluents as first-order fea-
tures. They are unnecessary in a ground approximation since
the value of a ground non-fluent does not change. However,
a lifted non-fluent can be evaluated to either true or false de-
pending on its grounding. These features are often crucial in
determining which action of Aâ to select.

Example 8 (Plateau). Let the state s1 be a situa-
tion in RC where the agent is at pos2 and needs
to move to pos3 to take a picture of an object o1.
There are no other objects. Then, Qθ(s1, move(pos3))
should be larger than Qθ(s1, move(pos1)). The non-fluent
OBJECT AT(o1, pos3) is required as a first-order feature
OBJECT AT(!obj, ?pos); otherwise, there would be a plateau
as Qθ(s1, move(pos3)) = Qθ(s1, move(pos1)).

Example 8 illustrates the importance of first-order fea-
tures with free variables. When combined with contextual
grounding, these features give a finer granularity of the func-
tion approximation. The inclusion of non-fluents does not
entirely resolve plateaus. If o1 is more than one grid posi-
tion away from the agent, there is no first-order feature or
ground feature which can represent this fact.

Mixed Approximation
By considering both first-order approximation and ground
approximation, hereafter referred to as a mixed approxima-
tion, we can obtain the respective strengths of each represen-
tation (i.e, better generalisation and finer granularity). We
propose two ways to utilise a mixed approximation:

Qmixedθ (s, a) = Qgndθ (s, a) +Qfoθ (s, a), (12)

Qmixedθ (s, a) =

{
Qfoθ (s, a), if episode ≤ SW
Qgndθ (s, a), otherwise,

(13)

where Qgndθ

(
Qfoθ

)
is the ground (first-order) approxima-

tion, and SW is a parameter which sets the episode from
which the policy switches from considering Qfoθ to Qgndθ .
By combining the Q-functions in Equation 12, we can re-
solve the plateaus due to a first-order approximation; while
the Q-values from Qfoθ are equal for multiple actions, those
from Qgndθ are unlikely (because each ground action has its
own weight components unlike in first-order approximation)
and can serve as a tiebreaker. We denote the policies gener-
ated by Equation 12 as πsum and by Equation 13 as πswitch.
Online learning of Qgndθ and Qfoθ are done concurrently and
independently (i.e., weight updates and feature discovery).

Transfer Learning. Transfer learning is an attractive option
to deal with large scale problems which require extensive

amounts of exploration before reaching some meaningful
states where rewards are observed (Wu and Givan 2010). We
leverage on Qfoθ learned in a small scale problem to solve
large scale problems. We focus our experiments on the fol-
lowing four modes of mixed approximation:

1. Learn Qfoθ from scratch, use πsum,

2. Transfer Qfoθ and keep it unchanged, use πswitch,

3. Transfer Qfoθ and keep it unchanged, use πsum, and

4. Transfer Qfoθ and update it online, use πsum.

In all of these modes, Qgndθ is learned online from scratch
since transfer learning is not possible for ground approx-
imation. (1) does not perform transfer learning and learns
Qfoθ online from scratch. In (2), we transfer a learned Qfoθ
and use it as an exploratory policy to acquire meaningful
observations to train Qgndθ , then switch to Qgndθ when it is a
sufficiently accurate enough approximation. (3) is similar to
(2) but Qfoθ and Qgndθ are considered by the policy in every
episode. (4) differs from (2) and (3) in that Qfoθ continues to
be updated in the current problem.

Experiments
Our experiments support two claims of our work: (1) our
proposed first-order approximation is able to solve large
scale problems comparable with the baseline, the ground
approximation, and (2) a mixed approximation inherits the
strengths of a first-order approximation and a ground ap-
proximation. We refer to the ground approximation, first-
order approximation, and mixed approximation as Qgndθ ,
Qfoθ , and Qmixedθ , respectively. Results are averaged over
10 independent runs and the (one) standard deviations are
represented by shaded areas in the figures. θ, Φ, Φc, and
relevances of Φc are updated across episodes while no infor-
mation is exchanged between runs. For transfer learning, the
aforementioned information learned in small scale problems
is transferred to large scale problems. We used ε-greedy
with a linearly decaying ε. The parameters used are ε = 1
for experiments without transfer learning and 0.2 otherwise,
α = 0.3, γ = 0.9, λ = 0.95, and ξ = 3. H ranges from 30
to 50 depending on the scale of the problem. Experiments
are conducted on an Intel Xeon E5-2660 v3 2.60 GHz with
8 cores and 32 GB of RAM.

Domains. We consider four domains: Recon (RC),
Triangle Tireworld (TT) (Little and Thiebaux 2007),
Academic Advising (AA) (Guerin et al. 2012), and
Robot Inspection (RI). RC, TT, and AA are domains
used in recent IPPCs (Sanner 2011; Grzes, Hoey, and San-
ner 2014). We solve large scale problems but also require
small scale problems for transfer learning. For RC and RI, a
randomised problem is used in each run.

We use a modified version of RC: the actions up, down,
left, and right are replaced with the action move(?pos).
This allows separate weights for each ground action of move.

We used RC36 and RC6 and the size of their state-action
spaces are 242 × 28 and 255 × 38, respectively.

In TT, a vehicle moves in a grid environment to reach a
goal location (i.e., only one goal). There is a probability of
0.5 of getting a flat tire when moving. The tire needs to be
replaced with a spare tire; if there isn’t one, a dead end is
reached. The vehicle can load a spare tire if it doesn’t have
one and there is one at its current location. We used TT3 and
TT6 and the size of their state-action spaces are 233 × 242
and 259 × 814, respectively.

In AA, a student has to pass some required courses. The
passing rate of a course course1 depends on the num-
ber of prerequisites course2, defined by the non-fluent
PREREQ(course1, course2), the student has passed. A cost
is given at each step for taking or retaking a failed course,
and for each required course which the student has not
passed. We used AA3 and AA5 and the size of their state-
action spaces are 230 × 16 and 240 × 21, respectively.
RI is a newly introduced domain in this paper. A robot has

to survey a location where objects are at before it can inspect
them. A one-time reward of 20 per inspected object is given
when the robot transmits at the communication tower (i.e., it
can achieve multiple goals at once). When the robot inspects
an object, there is a probability of its camera losing cali-
bration (0.15) which reduces the probabilities of success for
surveying and inspection from 1 to 0.2 and 0.9, respectively.
The robot can return to the docking station and calibrate its
camera. Unlike RC, the robot can move directly between any
pair of locations in a step. We used RI-S (small scale) and
RI-L (large scale) and the size of their state-action spaces
are 223 × 27 and 229 × 36, respectively.

Free Variables and Contextual Grounding. Figure 1
shows the ablation results for Qfoθ with various configu-
rations compared with Qgndθ . First, we examine if features
with free variables are necessary by eliminating them from
Φ. For TT, these features are unnecessary; the performance
without free variables are tied with those using location con-
text or goal context. In RC6 and RI-L, the performances
without free variables are the worst. This emphasises the
importance of free variables in decreasing the granularity of
first-order approximation.

Next, we look into the efficacy of contextual grounding.
For RC6, the experiments forQfoθ with only goal context are
omitted due to high computational costs incurred in dealing
with a large set of possible substitutions for the first-order
features. In general, location context (if applicable) com-
bined with goal context gives the best performance. Since
TT does not require features with free variables, contextual
grounding has minimal influence on performance though
including them does not worsen performance. Qfoθ outper-
forms Qgndθ in RI-L and RC-6 but fares worse in TT6 and
AA5. This is because TT and AA have plateaus. In TT, if the
vehicle moves along a shorter path, there are locations far-

6IPPC domains have numbered problem instances where a
larger number typically indicates a larger-scale problem. We de-
note a problem instance # of a domain DOMAINwith the shorthand
DOMAIN#.

Figure 1: Results for an ablation study for first-order ap-
proximation without free variables (No Free Var), without
contextual grounding (No Context), and with different com-
binations of contextual grounding. Location context (Loc.
Context) is not applicable in AA5. Goal context and loca-
tion context cannot be used together in TT6. Mixed approx-
imation combines the best performing configuration of first-
order approximation for each domain with ground approxi-
mation. Performance is benchmarked against the ground ap-
proximation.

ther down the path where there are no spare tires and dead
ends are unavoidable. Due to the increased abstraction in
Qfoθ , there are no first-order features which represent the
availability of spare tires in locations other than the vehicle’s
current location and adjacent locations.

In AA, goals could be dependent on other goals—the suc-
cess of passing a course depends on the number of prerequi-
sites passed. This cannot be represented by binary features
(see Example 7). Furthermore, the use of OR coupled with
the failure of iFDD+ to learn certain conjunctive features
caused a coarse granularity which worsens performance.
The conjunctive feature φf = PREREQ(?course, !course) ∧
PROGRAM REQUIREMENT(!course) ∧ ¬passed(!course)
represents the fact that (1) ?course is a prerequisite of
!course, (2) !course needs to be passed (i.e., a goal), and
(3) !course has not been passed. !course is ground to the
same course object which means “?course is a prerequisite
of an unachieved goal”. If φf has not been learned yet,
!course can be ground to different objects in each of the
three constituent features of φf ; these features represent
“?course is a prerequisite of at least one course, at least one
course needs to be passed, and at least one course has not

Figure 2: Results for transfer learning using first-order ap-
proximation where the Q-function learned in a small scale
problem is used: (1) without further learning (πfixed), (2)
with πswitch, (3) with πsum, (4) and with πupdatesum where the
transferred Q-function continues to be updated in the large
scale problems. For (2), (3), and (4), a ground approxima-
tion is learned from scratch. Results for ground approxima-
tion and mixed approximation without transfer learning are
provided as baselines.

been passed” which is less useful in deciding which course
to take.

Mixed Approximation. The performance for mixed ap-
proximation is shown in Figure 1. For each domain, we se-
lected the best performing configuration of first-order ap-
proximation and combined it with the ground approxima-
tion. As discussed previously, there are plateaus in AA,
RC, and TT. Qmixedθ utilises a ground approximation as
a tiebreaker to resolve plateaus. In all three domains, this
resulted in improved performance over Qfoθ . In particular,
Qmixedθ has the best performance in RC6 due to the com-
bined strengths of generalisation and fine granularity. In
RI-L, there are no plateaus and thus,Qmixedθ is comparable
to Qfoθ but still outperforms Qgndθ .

Generalisation and Transfer Learning. We used the first-
order approximations learned in small scale problems (i.e.,
RC3, AA3, TT3, and RI-S), denoted as Qsmallθ , to solve
large scale problems (i.e., RC6, AA5, TT6, and RI-L). The
parameters and the number of episodes are the same in both
small and large scale problems except that exploration (ε) is
reduced in the latter. Crucially, contextual grounding used
in the large scale problems must be the same as in the small
scale problems; we used location context (if applicable) and

goal context for all experiments. Figure 2 shows the results.
We included the results for Qgndθ and Qmixedθ from Figure 1
for ease of comparison.

We experimented with four modes of transfer learning.
(1) We use a greedy policy generated from Qsmallθ which is
kept unchanged (πfixed). Since no learning takes place, the
performance does not improve over episodes and are out-
performed by Qgndθ and Qmixedθ in later episodes. While
a first-order approximation provides generalisation, some
learning is still required to adapt to the new and unseen prob-
lems. This motivates the remaining three modes of transfer
learning. We kept Qsmallθ unchanged, learned Qgndθ online,
and either (2) switch from an ε-greedy policy induced by
Qsmallθ to one induced by Qgndθ (πswitch) at episode 750
(i.e., SW = 750), or (3) use an ε-greedy policy induced
by the sum of the Q-values from Qsmallθ and Qgndθ (πsum).
In RC6, AA5, and RI-L, the rewards decreased rapidly at
episode 750 which suggests that SW should be set larger.
Nevertheless, (2) outperforms (1) asymptotically in all prob-
lems. To do away with finetuning SW , we use πsum in (3)
which avoided the sharp decrease in reward. In (4), we use
the same setup as in (3) but allow Qsmallθ to be updated so
that it can improve its generalisation and adapt to the cur-
rent problem. In RC6 and RI-L, (4) has the best perfor-
mance. (2) has the best performance in AA5 because first-
order approximation does not perform well in AA; the switch
to consider only Qgndθ improved performance. In general,
our mixed approximation for transfer learning outperforms
the baselines, Qgndθ and Qmixedθ without transfer learning,
significantly initially, but have comparable asymptotic per-
formance as expected.

Conclusions and Future Work

We represented a linear approximation of the action-value
function with first-order features to achieve generalisation
over different planning problems independent of the objects,
number of objects, and initial and goal states. Free variables
in first-order features are crucial in giving a finer granular-
ity in the function approximation but caused ambiguity in
how they should be ground. We proposed to ground them
by considering contextual knowledge and introduced goal
and location context. The strengths of ground and first-order
approximations can be achieved by considering them to-
gether in a mixed approximation. Empirical results for four
benchmark domains show that our method reduces the sam-
ple complexity and can generalise across different planning
problems, enabling transfer learning. In future work, we plan
to consider richer forms of first-order features such as uni-
versal variables or counting features. This may allow wider
and more challenging problems to be solved.

Acknowledgements

This work was partially funded by the EPSRC ORCA Hub
(http://orcahub.org/) under grant number EP/R026173/1.

References
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored representa-
tions. Artificial intelligence 121(1-2): 49–107.
Croonenborghs, T.; Ramon, J.; Blockeel, H.; and
Bruynooghe, M. 2007. Online Learning and Exploit-
ing Relational Models in Reinforcement Learning. In Proc.
IJCAI, 726–731.
Driessens, K.; and Ramon, J. 2003. Relational instance
based regression for relational reinforcement learning. In
Proc. ICML, 123–130.
Džeroski, S.; De Raedt, L.; and Driessens, K. 2001. Rela-
tional reinforcement learning. Machine Learning 43(1-2):
7–52.
Geramifard, A.; Dann, C.; and How, J. P. 2013. Off-policy
learning combined with automatic feature expansion for
solving large MDPs. In Proc. 1st Multidisciplinary Con-
ference on Reinforcement Learning and Decision Making,
29–33.
Geramifard, A.; Walsh, T.; Roy, N.; and How, J. 2013a.
Batch iFDD: A Scalable Matching Pursuit Algorithm for
Solving MDPs. In Proc. UAI.
Geramifard, A.; Walsh, T. J.; Tellex, S.; Chowdhary, G.;
Roy, N.; and How, J. P. 2013b. A Tutorial on Linear
Function Approximators for Dynamic Programming and Re-
inforcement Learning, volume 6. Now Foundations and
Trends. doi:10.1561/2200000042.
Grzes, M.; Hoey, J.; and Sanner, S. 2014. International
Probabilistic Planning Competition (IPPC) 2014. In Proc.
ICAPS.
Guerin, J.; Hanna, J. P.; Ferland, L.; Mattei, N.; and Gold-
smith, J. 2012. The Academic Advising Planning Domain.
In Proc. ICAPS Workshop on the International Planning
Competition.
Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N.
2003. Generalizing Plans to New Environments in Rela-
tional MDPs. In Proc. IJCAI, 1003–1010. Morgan Kauf-
mann Publishers Inc.
Little, I.; and Thiebaux, S. 2007. Probabilistic planning vs.
replanning. In Proc. ICAPS Workshop on the International
Planning Competition: Past, Present and Future.
Mausam, D. S. W. 2003. Solving Relational MDPs with
First-Order Machine Learning. In Proc. ICAPS Workshop on
Planning Under Uncertainty And Incomplete Information.
Morales, E. 2003. Scaling Up Reinforcement Learning with
a Relational Representation. In Proc. Workshop on Adapt-
ability in Multi-agent System.
Ramon, J.; Driessens, K.; and Croonenborghs, T. 2007.
Transfer Learning in Reinforcement Learning Problems
Through Partial Policy Recycling. In Proc. ECML, volume
4701, 699–707. doi:10.1007/978-3-540-74958-5 70.
Sanner, S. 2006. Online Feature Discovery in Relational Re-
inforcement Learning. In Proc. Open Problems in Statistical
Relational Learning Workshop (SRL-06).

Sanner, S. 2010. Relational Dynamic Influ-
ence Diagram Language (RDDL): Language De-
scription. Http://users.cecs.anu.edu.au/ ssan-
ner/IPPC 2011/RDDL.pdf.
Sanner, S. 2011. ICAPS 2011 International Probabilistic
Planning Competition (IPPC). URL http://users.cecs.anu.
edu.au/∼ssanner/IPPC 2011/.
Sanner, S.; and Boutilier, C. 2012. Practical Linear Value-
Approximation Techniques for First-order MDPs. In Proc.
UAI, 409–417.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Van Otterlo, M. 2004. Reinforcement Learning for Rela-
tional MDPs. In Proc. Machine Learning Conference of
Belgium and the Netherlands.
Van Otterlo, M. 2005. A Survey of Reinforcement Learning
in Relational Domains. Technical report, CTIT Technical
Report Series.
Veeriah, V.; Oh, J.; and Singh, S. 2018. Many-Goals Rein-
forcement Learning. arXiv preprint arXiv:1806.09605 .
Walker, T. 2004. Relational Reinforcement Learning via
Sampling the Space of First-Order Conjunctive Features. In
Proc. ICML-04 Workshop on Relational RL.
Wang, C.; Joshi, S.; and Khardon, R. 2008. First Order De-
cision Diagrams for Relational MDPs. Journal of Artificial
Intelligence Research 31: 431–472.
Wu, J.; and Givan, R. 2005. Feature-Discovering Approxi-
mate Value Iteration Methods. In Zucker, J.; and Saitta, L.,
eds., Abstraction, Reformulation and Approximation, Pro-
ceedings of the 6th International Symposium (SARA), vol-
ume 3607 of Lecture Notes in Computer Science, 321–331.
doi:10.1007/11527862\ 25.
Wu, J.-H.; and Givan, R. 2007. Relational State-Space Fea-
ture Learning and Its Applications in Planning. In AAAI Fall
Symposium: Computational Approaches to Representation
Change during Learning and Development, 88.
Wu, J.-H.; and Givan, R. 2010. Automatic Induction of
Bellman-Error Features for Probabilistic Planning. JAIR 38:
687–755. doi:10.1613/jair.3021.
Younes, H. L.; and Littman, M. L. 2004. PPDDL1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-162,
Carnegie Mellon University.

