
Online Planning for F1 Race Strategy Identification

Diego Piccinotti∗, Amarildo Likmeta†∗, Nicolo Brunello∗, Marcello Restelli∗
Politecnico di Milano∗, Università di Bologna†

diego.piccinotti@mail.polimi.it, amarildo.likmeta2@unibo.it, nicolo.brunello@mail.polimi.it, marcello.restelli@polimi.it

Abstract
Formula 1 (F1) racing is one of the most competitive racing
competitions involving high-performance single-seater rac-
ing vehicles. The result of a race is determined by vehicle
and driver performance, as well as by the tire and pit-stop
strategy employed in the race. In this work, we consider the
problem of deciding when to pit-stop and which compound to
use as a sequential decision-making problem and we investi-
gate the application of online planning algorithms to tackle
it. The availability of high-accuracy race and vehicle simu-
lators presents a perfect opportunity to apply planning algo-
rithms, which require a model of the environment to search
for the best policies to apply. To this end, we investigate the
feasibility of applying online planning to the specific prob-
lem of race-strategy identification and propose an open-loop
approach that combines Monte Carlo sampling and Temporal
Difference (TD) updates to identify whether to perform a pit-
stop at each race lap and which tire compound to employ. Fur-
thermore, we perform an evaluation of different planning al-
gorithms using a simulator based on (Heilmeier et al. 2020a),
which we modify to be consistent with a planning application.

1 Introduction
In circuit motorsport events, participating race cars have to
complete a defined amount of laps around a closed circuit.
Formula 1 (F1) is an international category of motorsport
racing, in which open-wheel, single-seater racing cars com-
pete. In this competition, points are currently awarded after
each race to the top-ten classified drivers and their respec-
tive teams; therefore, the goal for each driver is to consis-
tently achieve the best possible final placement. This final
placement does not depend solely on their skill or the car
performance, but can be significantly influenced by their tire
strategy.

We call tire strategy the sequence of compounds fitted to
each car, together with the number of laps used for each set
of tires.

As F1 regulations often change quickly, in this work we
focus on the so-called “turbo-hybrid era” (2014 - present)
cycle. In this setting, the manufacturer chooses, from a hard-
ness spectrum, the most suitable compounds for the track,
mainly in relation to the asphalt’s parameters (e.g., temper-
ature and abrasion) and the subsequent expected life of the

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tire. Table 2 reports the relative hardness and denomination
of Pirelli tire sets across the years, as described in (Heilmeier
et al. 2020b).

The possibility of fitting fresh tires, also called pit-stop,
represents one of the most strategic opportunities in Formula
1, allowing either to become faster than direct competitors
or to overtake them through time gap gains instead of over-
taking directly on the track. In order to devise a good tire
strategy, it is essential to balance the benefit of fitting fresh
tires with the cost of stopping the car to fit them. Therefore,
the problem of deciding a tire strategy during the race can
be seen as a sequential decision-making problem, in which
the teams are tasked with deciding, at each race lap, whether
to pit-stop and which tire compound to choose.

In this work, we model this problem as a Markov Decision
Process (MDP) (Puterman 1994), with a continuous state-
space containing information about the race position and
performance of all the drivers and a discrete action-space,
representing the decision to perform a pit-stop or not, and
in the case a pit-stop is necessary, which of the available tire
compounds to use. One of the most commonly used methods
for solving this kind of sequential decision-making problem
is online planning (Munos 2014).

In online planning, given a (possibly approximate) model
of the environment, an autonomous agent is tasked with find-
ing the best future strategy given a finite budget, usually
expressed as calls to the model or time. The Monte Carlo
Tree Search (MCTS) family of algorithms uses tree-search
algorithms, together with Monte Carlo (MC) sampling, to it-
eratively build a search tree, starting from the current state
of the environment, which allows the agent to estimate the
value of each possible action and choose the optimal one.
The Upper Confidence Tree (UCT) (Kocsis and Szepesvári
2006) is the most used algorithm of the MCTS family, be-
cause of its simplicity and ease of use. UCT builds a search-
tree, iteratively and asymmetrically, focusing the tree build-
ing on the most promising regions, making it ideal for use
in problems with large search spaces, such as race strategy
identification, where building the full search tree is infeasi-
ble.

Race strategy identification presents the perfect scenario
for the application of planning algorithms as accurate mod-
els of the environment are often available to racing teams,
and the decision whether to change tires has to be made at



the end of each lap, giving the whole duration of the lap as
a possible budget to perform the planning activity. Nonethe-
less, planning in this setting presents some challenges like
large continuous state spaces and stochasticity of the envi-
ronment coupled with a large planning horizon.

In this work, we investigate the application of planning
algorithms to the race strategy identification problem and
address some of the issues that arise when applying these
algorithms to this specific decision problem. We employ an
open-loop planning strategy coupled with Q-learning (QL)
TD updates to tackle the high variance of the returns. To
evaluate the algorithms, we modify the simulator described
in (Heilmeier et al. 2020a) and use it as an evaluation envi-
ronment as well as a forward planning model. The open-loop
setting allows tackling the added complexity of stochas-
tic transitions in a continuous state-space, without signif-
icant losses in performance while still outperforming the
true strategies applied by the racing teams. The QL up-
date strategy, taken from the Reinforcement Learning (RL)
literature, allows lowering the variance of the back-up up-
dates generated from the noisy values coming from the roll-
out phase of the MTCS algorithm. Finally, we compare
this back-up strategy with other TD update strategies ap-
plied to UCT coming to the MCTS literature and observe
an improved performance of the QL updates compared to
SARSA(λ) (Vodopivec, Samothrakis, and Šter 2017) and
Power Mean (Dam et al. 2020) updates.

2 Planning in Continuous Stochastic
Environments

In this section, we review the literature on planning algo-
rithms used to address particular problems also faced in the
race strategy identification problem, such as large contin-
uous spaces and stochastic transitions. While most of the
research on MCTS focuses on deterministic transitions and
discrete actions, work on stochastic transitions also exists.
A stochastic transition model means that the branching fac-
tor of the search tree is no longer fixed but depends on
the number of possible next states in each node, which can
be infinite in the case of continuous state spaces. One of
the earliest MCTS algorithms tackling MDPs with stochas-
tic transitions, providing performance guarantees in terms
of the value of the recommended action, is Sparse Sam-
pling (Kearns, Mansour, and Ng 1999). However, sparse
sampling only considers the case where the number of
next states is limited by B < ∞, which is not the case
with continuous state spaces and is very computationally
inefficient in practice. The setting of considering bounded
next-state space cardinality is often seen in the literature.
StOP (Szörényi, Kedenburg, and Munos 2014) also provides
theoretical bounds on the sample complexity in this set-
ting, but it does so by explicitly storing and searching the
space of possible policies, which makes it a theoretical al-
gorithm since it would be infeasible to apply to anything
larger than small toy problems. MDP-GapE (Jonsson et al.
2020) also tackles this setting, but it does so by employing
UGapE (Gabillon, Ghavamzadeh, and Lazaric 2012) a Best
Arm Identification algorithm for the planning setting.

The main method applied to tackle continuous stochas-
tic environments is progressive widening. In DPW-
UCT (Couëtoux et al. 2011) the authors extend UCT to
continuous stochastic environments by progressively adding
new nodes to the search tree, depending on the number of
visits to the node. In practice, the number of children of the
node is limited by a sublinear function of the node visits.
When no children can be added to the nodes, one of the
current children is sampled and revisited. This also requires
tuning the hyperparameters of this bounding function of the
children of the nodes, which is problem-dependent. Further-
more, in practice, DPW-UCT not only requires a forward
model of the environment, but also requires to be able to save
the state of the simulator at each node of the tree in order to
restart the simulation from that node. In some cases, such
as with complex racing simulators, this greatly increases the
memory requirements for the planner.

The open-loop setting is another way to tackle stochas-
ticity in the environment. In this setting, the search is con-
ducted on the set of possible sequences of actions rather than
on the mappings from states to actions. Each node in the
search tree represents a sequence of actions instead of a sin-
gle state. This makes the search tree simpler, at the expense
of lower performance. OLOP (Bubeck and Munos 2010)
provides near-optimal guarantees on the expected simple re-
gret in this setting by constructing a bandit problem on the
set of possible action sequences. OLOP carefully constructs
valid high-probability upper bounds on the value of each
action sequence and chooses the one with the highest up-
per bound. Being that it has to select a complete action se-
quence from an exponential number of sequences at each it-
eration, it is impractical to apply except for small horizon
problems. UCT has also been extended to open-loop set-
tings. In (Lecarpentier et al. 2018) the authors extend UCT
to open-loop planning and prove that it retains the same con-
vergence guarantees as the original algorithm while preserv-
ing the anytime and the asymmetry properties.

3 Preliminaries
Markov Decision Processes
In this work, we adopt a discrete-time Markov Decision Pro-
cess (MDP) definition (Sutton and Barto 1998) given by the
6-tupleM = 〈S,A,P,R, γ, µ〉, where S is the state space,
A is the action space, P : S × A → P(S)1 is the transi-
tion model, R : S × A → R is the reward function, which
provides the reward signalR(s, a) when the agent is in state
s ∈ S and performs action a ∈ A, γ ∈ [0, 1] is the discount
factor and µ ∈P(S) is the initial state probability distribu-
tion.
An agent acting in the MDP, at each time t = 1, . . . , T ,
observes the current state st ∈ S , executes an action
at ∈ A and receives from the environment a reward rt =
R(st, at) and next state st+1 ∼ P(st, at). The behavior of
an agent is modeled by means of a policy π : S → P(A)
which maps states to probability distributions over actions.
We define the (policy-dependent) state value V π(s) =

1We denote by P(X ) the space of probability distributions
over X



Eπ
[∑∞

t=0 γ
trt

∣∣∣ s0 = s, at ∼ π(st)
]

and state-action value

Qπ(s, a) = Eπ
[∑∞

t=0 γ
trt

∣∣∣ s0 = s, a0 = a, at ∼ π(st)
]
,

respectively. The goal of an agent is to find the policy
π∗(s) = maxπ V

π(s), ∀s ∈ S.

Monte Carlo Tree Search
In this section, we also present a brief introduction to the
Monte Carlo Tree Search (MCTS) family of algorithms. In
particular, we focus on the most popular algorithm in the
MCTS family, the upper confidence bound for trees (UCT)
(Kocsis and Szepesvári 2006).
MCTS algorithms combine tree-search algorithms with
Monte Carlo sampling to iteratively build a search-tree.
They can be summarized by four general phases (Browne
et al. 2012):

1. Selection: from the root of the search tree, a selection pol-
icy (also called tree policy) is recursively applied up to
reaching an unexpanded leaf node. A node is expandable
if it represents a nonterminal state and has unvisited chil-
dren.

2. Expansion: one or more successors to the previously
found unexpanded node are generated according to the
actions available in the node.

3. Simulation: from the newly generated node(s), a simula-
tion (also called rollout) is run following a default policy
up to a terminal state.

4. Backpropagation: a ”back-up” of the rewards collected
during the simulation is performed at the nodes which
have been visited in the trajectory from the root, updat-
ing their statistics.
The UCT algorithm uses as selection policy the bandit

algorithm Upper Confidence Bound (UCB1) (Auer, Cesa-
Bianchi, and Fischer 2002). UCB1 chooses the next action
to perform, an, according to

an = arg max
i=1..K

B(ai) = Ri,Ti(n−1) + C

√
2 log n

Ti(n− 1)
,

whereK is the number of actions,C is a constant which reg-
ulates the exploration-exploitation tradeoff, Ti(n− 1) is the
number of times action i has been played up to time n − 1
and Ri,Ti(n−1) is the average payoff observed from arm i.
UCT considers the selection process at each decision node
as a separate bandit problem, where the payoff is the return
of the trajectories starting from that node. In addition, during
the back-up phase, UCT recursively updates the values of
the nodes from the leaf to the root of the tree. The algorithm
is proved to be consistent, i.e., it converges to the optimal
policy in the limit. In addition to the convergence guaran-
tees of UCT, the algorithm also enjoy some other proper-
ties that have made it highly popular in the literature. First,
the algorithm is anytime, which means it does not need to
know the planning budget in advance and can return its best
guess at any moment. This makes it particularly attractive
for real-time scenarios like race-strategy identification. The
algorithm is also asymmetric, which means that it iteratively

builds the search tree by favoring the most promising re-
gions of the tree while still giving a probability of selection
to all branches. This is extremely important in some applica-
tions where the search tree is extremely large. This, in fact, is
also one of the reasons why UCT has no theoretical guaran-
tees on its sample complexity. This asymmetric tree building
is based on the confidence bound kept from the UCB algo-
rithm employed in each node, which, in turn, are not valid
in high probability and might delay the discovery of the op-
timal paths if the reward function is misleading in the top
levels of the tree.

Open Loop Planning
In the open-loop setting, the problem is shifted from find-
ing the optimal policy (mapping from states to actions) to
finding the optimal sequence of actions to perform starting
from the current state, regardless of the intermediate states
visited, and instead averaging between them. Clearly, when
the MDP transitions are deterministic, the open-loop and
closed-loop settings are equivalent.

More specifically, given a starting state s ∈ S and a se-
quence of actions τ = (a0, a1, . . . , am), ai ∈ A, the value
of the sequence τ starting from the state s is defined as:

VOL(s, τ) = E

[
m∑
t=0

γtrt

∣∣∣ s0 = s, at ∈ τ

]
. (1)

We note that, τ can be an infinite sequence if γ < 1. Accord-
ingly, the open-loop optimal value is given by maximizing
over the sequences of actions:

V ∗OL(s) = max
τ

VOL(s, τ). (2)

We also define, the open-loop action-value of a state-action
pair, (s, a), as the maximizer over the possible action se-
quences τ that start with a, denoted with τa:

Q∗OL(s, a) = max
τa

VOL(s, τa). (3)

Planning in an open-loop setting leads to a loss of perfor-
mance, since Q∗OL(s, a) < Q∗(s, a), but it simplifies the
planning problem by limiting the size of the search-tree and
may be beneficial in cases with small search budgets.

4 Simulation Environment
To evaluate our planners, we build on the race simulator
described in (Heilmeier et al. 2020a). This simulator pro-
vides a parameterized and probabilistic description of the
race allowing control over probabilistic race events such as
accidents, Safety Cars (SC), or Virtual Safety Cars (VSC).
Each of the simulator’s internal events relies on probabilis-
tic models, whose parameters have been optimized to pro-
vide a plausible replica of past races, using publicly avail-
able data (Heilmeier et al. 2020a) on tire strategy and events.

The race is modeled using a lap-by-lap approach, in which
the race time of each driver in the simulation is computed at
each lap. Since the decision space is whether to pit stop on
each lap, a lap-by-lap simulator allows us to model temporal
transitions between states in an MDP setting. Lap times are



computed based on the sum of multiple contributions such
as, for instance, tire wear, fuel consumption, vehicle perfor-
mance, driver performance, race events, and others. Each of
these contributions is stochastic and is sampled from distri-
butions fitted on the dataset of previous races. For further
details on the various contributions and the dataset used to
fit the probabilistic models, see (Heilmeier et al. 2020a).

The simulator is also able to consider driver retirements
and Full Course Yellow (FCY) flag events. In Formula 1,
when exposed by the marshals, a simple yellow flag forbids
overtaking and requires drivers to lift the throttle pedal only
in the affected track sector, whereas FCYs affect the whole
track. An FCY is usually triggered by accidents on the track
that force the race marshals to order the drivers to reduce
their speed to maintain safety on the racecourse. There are
two types of FCY, Safety Car (SC) and Virtual Safety Car
(VSC), which both correspond to a delta with respect to a
target lap, set by the marshals before each race, that drivers
must respect. VSC is a digital safety measure, which re-
quires drivers to autonomously increase their lap times to
140% of a reference lap. Instead, SC is a physical car that is
sent on track to be followed by the drivers. Usually, the lap
times of drivers behind the Safety Car increase to 160% of
the reference lap time. Because all drivers are slowed down,
a pit-stop may become particularly appealing as the time lost
to change tires reduces during an FCY. This happens because
the FCY deployment lowers the speed difference between
the main straight and the pit-lane, thus reducing the amount
of time lost with respect to competitors when performing the
pit-stop.

Slight changes have been applied to the simulator to al-
low a high-level control of the drivers’ strategy. First, we
modified the way the Full Course Yellow (FCY) events are
generated and handled. It is clear that the simulation of FCY
events is crucial to obtain useful recommendations from the
agent within this context. The simulator in (Heilmeier et al.
2020a) handles the generation of random events according to
real race data, stored inside the simulator itself and loaded at
the beginning of each simulation. From the planning agent’s
point of view, even though this information is not included in
the state, in different simulations of the same race performed
during planning, the events would always occur at the same
time, consistently. This would mean that the planner would
be able to “predict the future” and prepare for the events
beforehand. Therefore, we modify this behavior by gener-
ating events during the race either with a stochastic model
or adding the real race’s events only at runtime. In particu-
lar, we allowed the simulator to accept new FCY events to
be added at runtime one lap after they have been requested.
This way, we ensure that FCYs in Monte-Carlo simulations
appear only when they would be “visible” in the race. The
duration of the FCY event can either be pre-specified, as-
suming a human operator evaluates the race situation and
enters the expected duration into the system, or it can be
generated at random, to simulate multiple scenarios during
the search.

Secondly, the race simulator would load strategies for all
drivers from a configuration file and then run the full event
simulation with these fixed strategies. In order to comply

with our planning simulation requirements, we extend the
simulator to support also lap-by-lap manual control of the
drivers. We consider a discrete action space where actions
represent either performing a pit stop to fit one of the avail-
able compounds (one action for each compound) or a “stay-
on-track action”. At the beginning of each race, one or more
drivers can be specified as controlled drivers, whose actions
can be specified at each lap. The other drivers are consid-
ered as part of the environment and are controlled by de-
fault policies. These default policies can be customized for
each driver, e.g., the lap strategy of the actual race, or they
can be specified at the beginning of the race. In the exper-
iments we performed, each non-controlled driver employed
the real-race tire strategy.

On top of this simple framework, the environment en-
sures, mostly by modifying actions available at each time-
step, that the constraints related to the F1 race strategy prob-
lem are satisfied. Firstly, we start the race episodes at a spec-
ified race lap, whereas before that lap, the agent-controlled
drivers take actions according to the strategy used in the real
race. This behavior models the fact that, barring accidents
or sudden weather changes, a pit-stop is not required in the
first laps of a race. Secondly, to simplify the decision space,
drivers controlled by an agent cannot perform more than two
pit stops in a single race, with the exception of one extra pit
stop allowed each time an FCY is deployed, but only while
the FCY stays active on the track. This constraint is reason-
able, as most of the races in the period under consideration
could have been completed with at most two pit stops unless
accidents or weather changes occurred. Furthermore, after a
driver has made a pit-stop, we remove the pit-stop possibility
for the next five laps. For instance, if a driver pits at lap 18,
he will be unable to pit again until lap 24. Since this is a rea-
sonable behavior even in real races (all compounds typically
last more than 10 laps), it is enforced in our environment to
reduce the planning complexity.

Each driver can choose from a finite number of tire sets
for each compound. In real races, each team reserves a spe-
cific number of tire-sets for each compound to the race. As
such data is not easily obtainable for historic races, we con-
sidered two possible scenarios. For races in which only two
compounds were available or had been used in the race, we
assumed three sets of tires available for the softer compound,
whereas the harder compound had two. For races where
more than two dry compounds were used, we assumed the
availability as follows: two sets of tires for the softer com-
pound, two for the medium, and one for the harder. We
made these default tire availability assumptions based on the
empirical observation that softer compounds are generally
preferred unless extreme track temperature conditions are
present. As per F1 regulations, drivers must change at least
one compound type during the race. If this does not happen,
the environment forces the offending driver(s) to make a pit
stop at the penultimate lap of the race to satisfy such rule
and avoid assigning penalties.

After the actions for all controlled drivers have been re-
ceived, the computation of the lap times is tasked to the un-
derlying simulator (Heilmeier et al. 2020a).



MDP Modelling
We now present details on the state and reward representa-
tion employed in this environment. The state-space is fairly
hard to model for this problem, as many factors are needed
to be taken into account to fully identify the racing situa-
tions. First, to represent the state of the race, we keep track
of the remaining laps until the end of the race. We also con-
sider two flags, which represent whether a Safety Car (SC)
or Virtual Safety Car (VSC) (types of FCY) event exists in
the current lap. Then, for each driver in the race, we track
features related to his performance, including their previous
lap time, cumulative race time, tire compound currently em-
ployed, current tire age (as a measure of tire degradation).
For each driver, we also track features related to the em-
ployed tire compounds and the remaining tire compounds.
This is important for strategic reasoning as well as for ful-
filling the condition of changing the compound at least once
during the race. To this end, for each driver, we keep a flag
variable, which represents whether the agent has satisfied the
condition on changing its compound type, as well as infor-
mation on how many tire sets for each remaining compound
type the driver has left. For instance, if we have three com-
pound types, we include three variables for each driver, each
of which tracks the number of tire sets of each compound
the driver has left. By combining the latter two, we do not
need to store information about previous tire changes, as this
gives us enough information on which tire compound to ap-
ply next in case we need to make a pit stop.

To summarize, the state is composed of 3 variables which
represent the state of the race together with K ∗ (R + D)
driver-related variables, where K is the number of drivers
in the race and D is the number of tire compounds, and R
is the number of variables tracking driver performance and
compound change, which in our setting equals to 5.

Finally, we discuss the reward function employed. Every
driver’s goal in F1 is to maximize his final position to accu-
mulate as many points as possible. Nonetheless, having a re-
ward function represented by the number of positions earned
at each lap would be too sparse a reward function, which is
harder to optimize. In this work, we employ a reward func-
tion represented by the negative lap time. In this way, each
driver aims to minimize the cumulative race time. In certain
situations, a driver may choose to sacrifice lap time in order
to keep his position or gain positions, e.g., when preventing
a competitor from overtaking or delaying a pit stop strate-
gically. A more principled approach would be to employ a
reward function that weighs two different objectives, mini-
mizing time and gaining positions, but accurately weighing
these two contributions would not be straightforward and is
beyond the scope of this work.

5 Open-Loop Planning for Race Strategy
In this work, we employ an open-loop approach to tackle
the race strategy problem, searching at every lap of the race
for the best race strategy to use for the rest of the race.
We choose an open-loop strategy instead of the alternative
progressive-widening (PW) (Couëtoux et al. 2011) because
of the additional memory constraints required to employ PW

by copying the internal state of the simulator to each node
of the search tree. In fact, for the evaluation campaign pre-
sented in the next section, we considered including an evalu-
ation of a PW-UCT algorithm but quickly ran out of memory
during the tree search, even for small search budgets.

We start from an open-loop setting of UCT. We denote
by T a planning tree and by Nd,i the i-th node at depth
d ≥ 0 for i ∈ N. N0,0 contains a single state, s0 ∈ S ,
from which we want to perform planning. Nodes Nd,i, with
d > 0, at deeper levels of the tree, represent the distribu-
tion of states given the sequence of actions from the root
of the tree to Nd,i. More specifically, given a sequence of
d actions, τd,i = (a1, a2, . . . , ad), this sequence identifies
exactly the node Nd,i in our tree T , representing the distri-
bution of states s ∈ S reachable by executing the sequence
of actions τd,i starting from the root state s0. We define the
value of a node Nd,i as

V (Nd,i) = E
s∼P(·|s0,τd,i)

[V ∗OL(s)] , (4)

and the value of an action a ∈ A in a node as:

Q (Nd,i, a) = E
s∼P(·|s0,τd,i)

[Q∗OL(s, a)] (5)

= E
s∼P(·|s0,τd,i)

[r(s, a)] + γV (Nd+1,j) , (6)

where τd+1,j = (τd,i|a) is the sequence of action derived
from concatenating τd,i with a and Nd+1,j is the corre-
sponding node in the tree.

The goal of our planner is to estimate the open-loop values
of the actions in the root of the tree by employing a UCT-like
tree policy, which considers action selection at each node
as a separate bandit problem and selects the action that op-
timizes an upper bound for Q values of the actions in the
node.

The second modification we add to the standard UCT
scheme is the tree back-up strategy. UCT employs MC up-
dates recursively up the tree after receiving the leaf-value
estimates from the rollout policy. Since the rollout policy is
suboptimal by definition (if we had an optimal policy for
rollout, we would not need planning) and the selection pol-
icy in the tree includes the exploration and exploitation of
intermediate value estimates, the back-up values include the
evaluation of suboptimal policies, which change with each
search iteration. This usually makes the value estimates in
the tree very noisy, which is a problem in our race strategy
problem as the margins for selecting a good pit-stop strat-
egy are small compared to the race duration. For this rea-
son, we employ a TD operator, namely the Q-learning oper-
ator (Watkins 1989) as follows:

Qt (Nd,i, a) = (1− αt)Qt (Nd,i, a) (7)

+ αt

(
rt + γmax

a′
Qt (Nd+1,j , a

′)
)
, (8)

where rt is the reward observed in the current search pass at
node Nd,i and αt is the learning rate. We include a compar-
ison with other TD update strategies (Vodopivec, Samoth-
rakis, and Šter 2017; Dam et al. 2020) in the experimental
setting.



Algorithm 1 Q-Learning Open Loop Planning
procedure OLSEARCH(s0)

Create root nodeN0,0 from state s0
while within computational budget do
Nd,i, s← TREEPOLICY(N0,0)
V (Nd,i)← ROLLOUT(Nd,i, s)
BACKUP(Nd,i)

end while
return BESTCHILD(N0,0)

end procedure
procedure TREEPOLICY(N )

whileN not terminal do
ifN not fully expanded then

return EXPAND(N )
else
N ← BESTCHILD(N , Cp)

end if
end while
returnN

end procedure
procedure ROLLOUT(N , s)

∆← 0
while s is non-terminal do

Choose a ∈ A(s) according to rollout strategy
Generate next state s′ and reward r
∆← γ∆ + r
s← s′

end while
return ∆

end procedure
procedure EXPAND(N )

Choose a ∈ untried actions fromN
s← SIMULATEUNTIL(N )
Execute a in s generating s′ and r
Add a new childN ′ toN
N ′.n← 0
N ′.r = r . Store the reward obtained during first visit
returnN ′, s′

end procedure
procedure BESTCHILD(N , c)

C(N ) denotes children nodes ofN
C(N , a) denotes the child ofN corresponding to action a

return arg maxaQ(N , a) + c
√

2 lnN .n
C(N ,a).n

end procedure

procedure BACKUP(N , V )
C′(N ) denotes explored children nodes ofN
N ′ ← parent ofN
N .n← N .n+ 1
whileN ′ is not null do

ifN is leaf then
∆← V

else
∆← maxa′∈C′(N )Q(N , a′)

end if
Q(N ′, a)← Q(N ′, a) +

α(N ′.r + γ∆−Q(N ′, a))
N ′.n← N ′.n+ 1
N ← N ′

N ′ ← parent ofN
end while

end procedure

Algorithm 1 shows the pseudocode of the planner em-
ployed. At each lap in the race, we perform multiple iter-
ations of planning until we reach the planning budget. At
each search iteration, we perform the UCB selection at each
node of the tree until we reach a leaf-node, from which we
perform a rollout, using one of the rollout policies discussed
below. The rollout gives us an initial (noisy) estimation of
the node value. Next, we recursively employ QL updates up
the tree, updating the node and action values and counts.
This means that the initial noisy back-up value given by the
rollout, even though it is stored in the leaf node, might not
make its way up to the root, since at each node we employ
the max operator to define the target value, as shown in the
BACKUP procedure. When all the children of a node have
not been explored yet, for the Q-learning update of Equa-
tion 7, we apply the max operator only on the visited nodes,
disregarding the unexplored actions.

For space considerations, we show the implementation
of all procedures, except for SimulateUntil. This procedure
takes as input a node of the search tree and simulates all the
transitions from the root state to the input node by executing
the sequence of actions that identify that node. In the end,
it returns the state of the environment resulting from the se-
quence execution, which is used later as a starting point for
the rollout.

6 Rollout and Opponent Policies
Since, during the planning phase, we do not desire an agent
to be “clairvoyant” over the opponents’ strategies, we need
to specify a planning configuration for the simulator to use
when performing the tree search. In our experimental set-
ting, we implemented this goal by considering all drivers as
controlled by the planner and applying a rollout policy for
the opposing drivers. The rollout policy is a crucial compo-
nent of MCTS-like algorithms, as it provides an initial esti-
mate for the value of leaf nodes, which is then used during
the back-up phase of such algorithms. Using a random pol-
icy would generate extremely noisy value estimates in the
tree nodes; therefore, careful consideration of the rollout is
needed.

During our experiments, we modeled two types of default
strategies. The first approach we considered was a simple
stochastic strategy: the considered driver, at each lap, has a
0.9 probability of staying on the track and a 0.1 probability
of making a pit stop by randomly choosing one of the com-
pounds available. As the strategies provided by this simple
baseline were, for the most part, unreasonable for both the
track situation and the tire degradation status in the simula-
tor, we moved to a more realistic strategy definition.

We then focused on the predicted race strategies pub-
licly available in sports articles (see Table 3) taken from
the motorsport opinion website ESPN.2 Since the Monte-
Carlo agents explore different and sometimes unreasonable
strategic options, it would have been hard to automatically
identify and re-map the agent’s strategy to one of the pre-
dicted ones. To be independent of such mapping, we com-
puted a plausible amount of laps that each compound would

2https://www.espn.com/f1

https://www.espn.com/f1


Season Track ESPN True VSE Sarsa UCT Power UCT OL UCT QL-OL UCT Ranking Gain
2015 Japan 4576.01±1.0 4577.52±1.0 4575.34±1.3 4575.36±1.2 4583.25±2.4 4577.99±1.1 4570.35±1.0* 0.4
2016 Japan 4507.85±1.0 4507.54±0.7 4549.01±1.3 4508.90±0.8 4524.45±1.2 4519.03±1.3 4505.35±0.9* 0.1
2017 Australia 4470.39±1.7 4466.22±1.9 4477.29±1.3 4466.56±2.9 4474.12±2.2 4479.90±2.2 4459.71±2.4* -1.3
2017 Spain 5202.42±1.4 5209.89±1.3 5207.94±1.1 5196.38±2.1 5200.83±2.0 5211.05±1.1 5188.05±1.3* 0.1
2017 Austria 4525.88±1.2 4430.84±1.7* 4491.66±1.9 4476.43±2.8 4444.38±2.4 4484.14±1.8 4465.85±2.9 -2.4
2017 Belgium 4265.4±0.7 4256.44±1.0 4236.0±0.6* 4255.98±0.7 4259.52±0.7 4260.24±1.0 4246.09±0.7 2.9
2017 Russia 4419.98±1.3 4412.87±1.2* 4428.62±2.4 4425.10±2.1 4437.00±1.3 4430.93±1.7 4421.54±1.3 0.0
2018 China 5140.7±0.9 5134.01±1.0 5095.34±2.0* 5099.33±1.5 5128.63±0.9 5113.31±2.6 5098.93±1.5 4.2
2018 Italy 3909.37±1.9 3898.38±1.9* 3943.95±1.9 3907.22±1.4 3918.42±1.3 3911.24±1.3 3903.67±1.5 -0.3
2018 Brazil 4678.24±2.1* 4700.36±2.1 4711.61±1.7 4692.7±3.1 4699.25±1.7 4706.94±1.5 4686.32±2.9 2.0

Table 1: Cumulative return comparison for the experimental setting, lower is better. Bold stands for best performance among
planners, star stands for best overall race time.

Figure 1: A sample of strategies for the 2018 Italian GP pre-
dicted by Pirelli, taken from https://twitter.com/pirellisport/
status/1036169705634054144

last in a specific race, which we call compound durability,
which would still yield some of ESPN’s predicted strategies.
Figure 1 shows an example of the manufacturer’s predicted
strategies, proposing different options to cover the race dis-
tance. Note that the same compound can be used in stints
of different lengths, depending on the sequence of tires in-
cluded in the strategy and the position of the stint in the se-
quence. This may be due to the fact that, in the real world,
tire degradation is higher in the early stages of the race since
less rubber has settled on the asphalt, and the cars have more
weight due to the almost entirely unburned fuel mass. In
practice, this means that the same compound will last longer
if fitted towards the end of the race, being less stressed dur-
ing its working period. Furthermore, a compound usually
wears out faster if the driver pushes for faster lap times, lead-
ing to a shorter stint duration.

To compute tire durability, we first took the average dura-
tion for stints with uncertain duration, and then we averaged
between stints with the same compound and different strate-
gies that had different durations. After applying the second
averaging, however, some of the original strategies were no
longer obtainable: one or more compounds would have re-
duced their maximum durability and therefore left a part of
the race uncovered, requiring a further pit stop. To address
this problem, we extended the durability of the hardest com-
pounds to cover the missing laps, relying on the empirical

observation that they present a slower lap-time degradation
than the softer ones and, therefore, extending a stint for a few
laps would have less impact than using a softer compound.

The rollout policy that takes advantage of these durabili-
ties works as follows. When the current tire set has reached
its expected duration, the pit stop is performed with a prob-
ability of 0.9, or the decision is deferred by one lap with a
probability of 0.1. The choice of the next compound to use
is deterministic: if there are any compounds whose durabil-
ity would cover the remainder of the race, the policy sug-
gests fitting the softest one among them. If there is no such
compound, the softest compound available is fitted instead.
Finally, to meet F1 regulations, the policy ensures that each
driver switches to a different compound at their first pit stop.

7 Experiments
Our experiments focused on a specific driver, Sebastian Vet-
tel, and on a specific time frame, from 2015 to 2018. This
decision was backed up by the fact that Vettel, who was driv-
ing for Scuderia Ferrari at the time, was a close contender
for the title in 2017 and 2018 and had a good performance
in the remaining years. Furthermore, we could recall that
Scuderia Ferrari made some strategic mistakes in some races
during this period, so the goal of our experiments for these
races was to check if an online planning agent would have
avoided them. As the race simulator presents some devia-
tions from the historical data, we simulated each race 1000
times and averaged each driver’s final race time to generate
the baseline performance of the true strategies employed by
the drivers.

For our experiments, we considered those races where the
average gap between Vettel and the driver in front was less
than 10 seconds and we selected a sample of 9 races (see
Table 4). This selection criterion was aimed at finding races
in which, with better strategic decisions, it would have been
possible to bring the driver to the front. As the authors are
Ferrari fans, the 2017 Spanish GP race was added to the race
list, as it hosted a spectacular battle between Hamilton and
Vettel, and we feel that the Scuderia’s strategy could have
been stronger on that event, bringing the number of compe-
titions considered to 10.

For each race, we performed 100 experiments with each
of the following planners: Sarsa UCT (Vodopivec, Samoth-
rakis, and Šter 2017), Open-Loop UCT (Lecarpentier et al.

https://twitter.com/pirellisport/status/1036169705634054144
https://twitter.com/pirellisport/status/1036169705634054144


2018), PowerUCT (Dam et al. 2020), and our agent Q-
learning OL UCT. Furthermore, we performed the same
amount of experiments using VSE (Heilmeier et al. 2020b),
a neural-network-based agent designed specifically for au-
tomated F1 pit-stop decision. For our QL OL-UCT we em-
ployed an exponentially decaying learning rate. We started
the strategy planning from lap 8 and set the discount factor
γ to 1 to make the agent focus on the cumulative reward, as,
in F1 racing, points are awarded based on the final stand-
ing. The computational budget of our experimental setting
represents the maximum number of samples that the agent
can take from the environment. We set the computational
budget to 10,000 samples. The time horizon for the prob-
lem is variable between each race, as it corresponds to the
total number of laps prescribed for each racing event minus
the starting lap. Table 4 reports the selected races and the
respective number of prescribed laps.

Each planner’s hyperparameters were tuned on the 2017
Australian GP race using the Bayesian optimization frame-
work Mango (Sandha et al. 2020) and employed the same
hyper-parameters in each race. We consider the 2017 Aus-
tralian GP a suitable choice for hyperparameter tuning be-
cause of two main factors. First, the real race was a close
fight between Vettel and Hamilton, which ultimately Vettel
won. Secondly, we selected this race because it had no acci-
dents and no subsequent FCYs so that the optimizer would
not look for parameters correlated to specific racing situa-
tions.

Table 1 reports the results for our experiments, compar-
ing the undiscounted cumulative return for both the planners
mentioned at the beginning of this section and two baselines.
The ESPN baseline value was obtained by applying the de-
fault strategy prescribed by the environment, whereas the
true baseline corresponds to the result obtained by applying
the strategy used by the driver in the real race. We show in
bold, the best planner (between the UCT variants) in each
race. We use bold, only when the difference between the
best and second best satisfies a statistical significance test.
Only in China 2018 we do not have a best planner since the
performance of QL-OL UCT and SARSA UCT are close
compared to their confidence interval. Moreover, with the
symbol ∗, we denote the best strategy between planners and
baselines (with statistical significance).

The results we obtained show that in most races, our pro-
posed planning algorithm performs better than other plan-
ners. Furthermore, the planner is able to improve the average
race times on most occasions with respect to the real strategy
performed by the drivers. All planners fail to do so in three
races: Italy 2018, Russia 2017, and Austria 2017. In particu-
lar, the Austria 2017 race shows the larger gap between real
strategy and planner performance. Our a-posteriori analysis
found that the predicted ESPN strategy was highly incon-
sistent with the real strategies applied during the race: the
article considered more tire wear than in the race, almost
halving some of the durability of the compounds. We at-
tribute this performance loss to the suboptimality of the roll-
out policy, which can be addressed by increasing the com-
putational budget: in this specific race, the performance of
our proposed algorithm improved by 15 seconds by setting

the computational budget to 100,000, whereas a parameter
tuning for the race did not provide significant performance
gains.

A final remark is that, in most of the considered races, au-
tonomous agents are able to improve or maintain the final
position of the real driver. The last column, labeled Ranking
Gain shows the average ranking improvement achieved by
our planner compared to the position achieved by the true
race strategies of the race. An interesting case where this
does not happen is represented by the 2017 Australian GP,
in which our proposed algorithm is able to improve the cu-
mulative race time but loses positions in the final placement.
This is most likely an artifact generated by the reward struc-
ture: since the reward promotes behaviors that minimize the
cumulative race time, the agent does not consider it penal-
izing to take actions that allow its competitors to overtake
it, as long as this allows to maximize the reward, suggesting
the need for a carefully thought-out reward function that in-
centivizes fast laps and position gains, while still providing
a dense reward signal to the agent.

8 Conclusions and Future Works

In this work, we investigated how MCTS algorithms can be
used to design an automatic race strategy identification sys-
tem. We employed an open-loop search strategy to tackle
the large, continuous, stochastic state transition model and
employed TD updates to address the high variance of the
returns observed in the search tree. We empirically demon-
strated, using a racing simulator, that open-loop planning
can be used to improve the performance of hand-crafted
race strategies, represented by the ESPN rollout policies em-
ployed during the search. We believe that online-planning al-
gorithms can be a resourceful tool, able to provide race strat-
egy recommendations to the strategists of Formula 1 teams
during the race, especially when race situations differ from
the predictions made before the race.

Nevertheless, we observe that the performance of plan-
ners strongly depends on the rollout policies employed, as
they are used for initial evaluations of the tree nodes, and
therefore affect the regions of the tree explored during the
search. This can, in turn, be tackled with higher search bud-
gets.

Several future extensions of this work are possible. First,
to decrease search times and to allow generalization across
races, we can employ an AlphaZero (Silver et al. 2017) plan-
ning strategy, where function approximators are used to give
an initial bias to the actions to explore in the tree and to eval-
uate the leaf nodes. The extension of this algorithm to an
open-loop setting is not straightforward and can present an
interesting research problem. Second, a multi-agent frame-
work can be employed to model situations where the con-
trolled driver is “dueling” with other drivers. In this case,
the dueling driver would not be considered as part of the en-
vironment, but a multi-player (double in the simple case of
one rival) MCTS could be employed, which allows the agent
to consider the adversarial behavior of the opponent.



References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
Time Analysis of the Multiarmed Bandit Problem. Mach.
Learn. 47(2–3): 235–256. ISSN 0885-6125. doi:10.
1023/A:1013689704352. URL https://doi.org/10.1023/A:
1013689704352.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Com-
putational Intelligence and AI in Games 4(1): 1–43. doi:
10.1109/TCIAIG.2012.2186810.
Bubeck, S.; and Munos, R. 2010. Open Loop Optimistic
Planning. In COLT 2010 - The 23rd Conference on Learning
Theory, Haifa, Israel. URL https://www.microsoft.com/en-
us/research/publication/open-loop-optimistic-planning/.
Couëtoux, A.; Hoock, J.-B.; Sokolovska, N.; Teytaud, O.;
and Bonnard, N. 2011. Continuous Upper Confidence Trees.
In Coello, C. A. C., ed., Learning and Intelligent Optimiza-
tion, 433–445. Berlin, Heidelberg: Springer Berlin Heidel-
berg. ISBN 978-3-642-25566-3.
Dam, T.; Klink, P.; D’Eramo, C.; Peters, J.; and Pajari-
nen, J. 2020. Generalized Mean Estimation in Monte-
Carlo Tree Search. In Bessiere, C., ed., Proceedings of
the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, IJCAI-20, 2397–2404. International Joint
Conferences on Artificial Intelligence Organization. doi:10.
24963/ijcai.2020/332. URL https://doi.org/10.24963/ijcai.
2020/332. Main track.
Gabillon, V.; Ghavamzadeh, M.; and Lazaric, A. 2012.
Best Arm Identification: A Unified Approach to
Fixed Budget and Fixed Confidence. In Pereira, F.;
Burges, C. J. C.; Bottou, L.; and Weinberger, K. Q.,
eds., Advances in Neural Information Processing Sys-
tems, volume 25, 3212–3220. Curran Associates, Inc.
URL https://proceedings.neurips.cc/paper/2012/file/
8b0d268963dd0cfb808aac48a549829f-Paper.pdf.
Heilmeier, A.; Graf, M.; Betz, J.; and Lienkamp, M. 2020a.
Application of Monte Carlo Methods to Consider Prob-
abilistic Effects in a Race Simulation for Circuit Motor-
sport. Applied Sciences 10(12). ISSN 2076-3417. doi:
10.3390/app10124229. URL https://www.mdpi.com/2076-
3417/10/12/4229.
Heilmeier, A.; Thomaser, A.; Graf, M.; and Betz, J. 2020b.
Virtual Strategy Engineer: Using Artificial Neural Networks
for Making Race Strategy Decisions in Circuit Motorsport.
Applied Sciences 10(21). ISSN 2076-3417. doi:10.3390/
app10217805. URL https://www.mdpi.com/2076-3417/10/
21/7805.
Jonsson, A.; Kaufmann, E.; Ménard, P.; Domingues, O. D.;
Leurent, E.; and Valko, M. 2020. Planning in Markov Deci-
sion Processes with Gap-Dependent Sample Complexity.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 1999. A Sparse
Sampling Algorithm for Near-Optimal Planning in Large
Markov Decision Processes. In Proceedings of the 16th
International Joint Conference on Artificial Intelligence -

Volume 2, IJCAI’99, 1324–1331. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based Monte-
Carlo Planning. In In: ECML-06. Number 4212 in LNCS,
282–293. Springer.
Lecarpentier, E.; Infantes, G.; Lesire, C.; and Rachelson, E.
2018. Open Loop Execution of Tree-Search Algorithms. In
Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18, 2362–2368. In-
ternational Joint Conferences on Artificial Intelligence Or-
ganization. doi:10.24963/ijcai.2018/327. URL https://doi.
org/10.24963/ijcai.2018/327.
Munos, R. 2014. From Bandits to Monte-Carlo Tree Search:
The Optimistic Principle Applied to Optimization and Plan-
ning. Foundations and Trends® in Machine Learning 7(1):
1–129. doi:10.1561/2200000038. URL https://doi.org/10.
1561%2F2200000038.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY,
USA: John Wiley & Sons, Inc. ISBN 0471619779.
Sandha, S. S.; Aggarwal, M.; Fedorov, I.; and Srivastava,
M. 2020. Mango: A Python Library for Parallel Hyper-
parameter Tuning. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 3987–3991. IEEE.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T. P.; Simonyan, K.; and Hassabis, D. 2017.
Mastering Chess and Shogi by Self-Play with a General Re-
inforcement Learning Algorithm. CoRR abs/1712.01815.
URL http://arxiv.org/abs/1712.01815.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. A Bradford book. Bradford Book.
ISBN 9780262193986.
Szörényi, B.; Kedenburg, G.; and Munos, R. 2014. Op-
timistic Planning in Markov Decision Processes Using a
Generative Model. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’14, 1035–1043. Cambridge, MA,
USA: MIT Press.
Vodopivec, T.; Samothrakis, S.; and Šter, B. 2017. On Monte
Carlo Tree Search and Reinforcement Learning. J. Artif. Int.
Res. 60(1): 881–936. ISSN 1076-9757.
Watkins, C. J. C. H. 1989. Learning from delayed rewards.
Ph.D. thesis, King’s College, Cambridge.

https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://www.microsoft.com/en-us/research/publication/open-loop-optimistic-planning/
https://www.microsoft.com/en-us/research/publication/open-loop-optimistic-planning/
https://doi.org/10.24963/ijcai.2020/332
https://doi.org/10.24963/ijcai.2020/332
https://proceedings.neurips.cc/paper/2012/file/8b0d268963dd0cfb808aac48a549829f-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/8b0d268963dd0cfb808aac48a549829f-Paper.pdf
https://www.mdpi.com/2076-3417/10/12/4229
https://www.mdpi.com/2076-3417/10/12/4229
https://www.mdpi.com/2076-3417/10/21/7805
https://www.mdpi.com/2076-3417/10/21/7805
https://doi.org/10.24963/ijcai.2018/327
https://doi.org/10.24963/ijcai.2018/327
https://doi.org/10.1561%2F2200000038
https://doi.org/10.1561%2F2200000038
http://arxiv.org/abs/1712.01815


Season A1 A2 A3 A4 A5 A6 A7
2014 Hard Medium Soft Supersoft - - -
2015 Hard Medium Soft Supersoft - - -
2016 Hard Medium Soft Supersoft Ultrasoft - -
2017 Hard Medium Soft Supersoft Ultrasoft - -
2018 Superhard Hard Medium Soft Supersoft Ultrasoft Hypersoft
2019 - C1 C2 C3 - C4 C5

Table 2: Overview of available tire compounds in the seasons 2014 to 2019. Taken from (Heilmeier et al. 2020b)

Season Track Source
2015 Japan https://www.espn.co.uk/f1/story/ /id/13768566/japanese-grand-prix-strategy-briefing
2016 Japan https://www.espn.co.uk/f1/story/ /id/17750221/japanese-grand-prix-strategy-guide
2017 Australia https://www.espn.com/f1/story/ /id/19005027/australian-grand-prix-race-strategy-guide
2017 Spain https://www.espn.co.uk/f1/story/ /id/19379342/spanish-grand-prix-strategy-guide
2017 Austria https://www.espn.com/f1/story/ /id/27087391/austrian-grand-prix-strategy-guide
2017 Belgium https://www.espn.com/f1/story/ /id/20473131/belgian-grand-prix-strategy-guide
2017 Russia https://www.espn.com/f1/story/ /id/19273668/russian-grand-prix-strategy-guide
2018 China https://www.espn.com.au/f1/story/ /id/23177650/chinese-grand-prix-strategy-guide
2018 Italy https://www.espn.com/f1/story/ /id/24553859/italian-grand-prix-strategy-guide
2018 Brazil https://www.espn.com/f1/story/ /id/25242197/brazilian-grand-prix-strategy-guide-race-pace

Table 3: ESPN source articles used for building fictitious tire durabilities.

A Dynamic events
Here we present details on the generation of FCY events employed during the search phase. We allowed the simulator to accept
new FCY events to be added at runtime one lap after they have been requested. This way, we ensure that FCYs in Monte-Carlo
simulations appear only when they would be “visible” in the race. The FCY event’s length can either be pre-specified, in the
assumption that a human operator would be evaluating the race situation and inputting the predicted duration to the system,
or be generated at random, to simulate multiple scenarios during the search. We ensure that the following constraints are not
violated:
• When requiring at lap l the generation of an event, the simulator generates an actual VSC or SC only at lap l + 1. As the

event’s starting point is represented by a cumulative race time, this constraint is necessary to ensure that the FCY event is
generated in the future and started simultaneously for all drivers. If the constraint were not satisfied, lapped or slower drivers,
which have a larger cumulative race time than non-lapped ones but have covered less of the race distance, could already have
passed the FCY starting timestamp, leading to inconsistencies in drivers that are subject to the FCY.

• A new event can only be generated at least one lap of distance from a previous one.
• When the FCY duration is generated randomly, if an event is already running at lap p and a new FCY event is requested, the

current event duration is extended by a number of laps sampled randomly, to simulate the merging of the two events.

https://www.espn.co.uk/f1/story/_/id/13768566/japanese-grand-prix-strategy-briefing
https://www.espn.co.uk/f1/story/_/id/17750221/japanese-grand-prix-strategy-guide
https://www.espn.com/f1/story/_/id/19005027/australian-grand-prix-race-strategy-guide
https://www.espn.co.uk/f1/story/_/id/19379342/spanish-grand-prix-strategy-guide
https://www.espn.com/f1/story/_/id/27087391/austrian-grand-prix-strategy-guide
https://www.espn.com/f1/story/_/id/20473131/belgian-grand-prix-strategy-guide
https://www.espn.com/f1/story/_/id/19273668/russian-grand-prix-strategy-guide
https://www.espn.com.au/f1/story/_/id/23177650/chinese-grand-prix-strategy-guide
https://www.espn.com/f1/story/_/id/24553859/italian-grand-prix-strategy-guide
https://www.espn.com/f1/story/_/id/25242197/brazilian-grand-prix-strategy-guide-race-pace


Season Track Laps SC VSC
2015 Japan 53 No No
2016 Japan 53 No No
2017 Australia 58 No No
2017 Spain 66 No Yes
2017 Austria 71 No No
2017 Belgium 44 Yes No
2017 Russia 53 No Yes
2018 China 56 Yes No
2018 Italy 53 Yes No
2018 Brazil 71 No No

Table 4: List of the races used for evaluating planners’ performance in the experiments. The laps column reports the real number
of laps for each race


	Introduction
	Planning in Continuous Stochastic Environments
	Preliminaries
	Markov Decision Processes
	Monte Carlo Tree Search
	Open Loop Planning

	Simulation Environment
	MDP Modelling

	Open-Loop Planning for Race Strategy
	Rollout and Opponent Policies
	Experiments
	Conclusions and Future Works
	Dynamic events

