Model-free Automated Planning Using Neural Networks

Michaela Urbanovska and Jan Bim and Leah Chrestien and Antonin Komenda and Tomas Pevny
Department of Computer Science, Faculty of Electrical Engineering
Czech Technical University in Prague
{michaela .urbanovska, chreslea, antonin.komenda, pevnytom}@fel .cvut.cz,
jan.bim@datamole.cz

Abstract

Automated planning for problems without an explicit
model is an elusive research challenge, which, however,
if tackled, could provide general approach to problems
in real-world unstructured environments. There are cur-
rently two strong research directions in the area of Ar-
tificial Intelligence (AI), namely, machine learning and
symbolic Al. The former provides techniques to learn
models of unstructured data but does not provide further
problem solving capabilities on such models. The latter
provides efficient algorithms for general problem solv-
ing, but requires a model to work with. In this paper, we
propose a combination of these two areas, namely deep
learning and classical planning, to form a planning sys-
tem that works without a human-encoded model. The
deep learning part extracts the model in a form of a
transition system and a goal-distance heuristic estima-
tor; the classical planning part uses such a model to
efficiently solve the planning problem. Besides the de-
sign of such planning systems, we provide experimen-
tal evaluations comparing the implemented technique to
classical model-based methods.

Introduction

The main focus of this work is to analyze the possibilities
and limitations of using deep learning in combination with
classical planning. Instead of replacing the planning process
as a whole and trying to make the network learn a search
algorithm, we decided to focus on partial replacement of two
components involved in many standard planning algorithms,
namely, the transition system and heuristic functions.

Classical planning provides great methods for general
problem solving. Unfortunately, these methods can strug-
gle in large unstructured domains. On the other hand, deep
learning methods have been demonstrated to work well on
many domains without a clear structure. Therefore, combin-
ing both of these methods may remove the need for an ex-
plicit planning model.

Asai and Fukunaga in (Asai and Fukunaga 2017) and
(Asai and Fukunaga 2018) connected deep learning and
classical planning by creating LatPlan, which is a system
that takes in an initial and a goal state of a problem in-
stance and returns a visualised plan execution. The image
on the input is transformed and processed in order to gener-
ate a standardized problem representation, which can then be
solved by classical planning methods. In (Garrett, Kaelbling,
and Lozano-Pérez 2016), Garret et al. uses machine learning

techniques to create heuristic functions that improve a search
algorithm. Finally, in (Gomoluch et al. 2019), learning poli-
cies for search algorithms is provided.

This work can be understand as a follow-up work of Asai
and Fukunaga’s architecture. In contrast to their work, we
use maze-like problems and images of these mazes are the
input to our algorithm. The solution is then produced as a
sequential plan navigating through our designed transition
system, which in turn is generated by our learned model. To
increase efficiency of the search, we use heuristic principle
proposed by Garret et al.

Background
Classical Planning

Let’s first focus on STRIPS, which provides a symbolic rep-
resentation to a model-based planning problem instance.

Definition 1 (STRIPS Planning Task) A STRIPS planning
task Il is a tuple

II=(F,0,s;, 84,

where F' = {f1, fa, ..., fn} is a set of facts, which can hold
in the world. A state of the world is defined by facts which
hold in the state s C F . O = {01, 02, ..., 0m } is a set of op-
erators transforming the world, s; is the initial state, which
consists of facts that hold in the initial state, s4 is a goal
state condition, which contains facts that hold in every goal
state and c is a cost function c(o) : o — R which gives
each operator a positive cost.

Every operator o € O is a tuple where o =
(pre(o), add(o), del(0)), pre(o) C F is a set of precondi-
tions, which are facts, that have to hold in a state for the
operator o to be applicable in that state, add(o) C F is a
set of facts, which are added to the state after applying the
operator o in s and del(o) C F are delete effects, which are
facts that are no longer true after using the operator o.

To create a STRIPS representation of a problem, we have
to be able to construct the facts and the operators from the
problem definition. To find a solution of such a problem, we
construct a state-transition system, in which we look for a
path to the goal state from the initial state.

Definition 2 (Transition System) A transition system is a
tuple ¥ = (S, A, v, c), where

e S is a finite set of states

e A is a finite set of actions

e v : S x A — S is a state-transition function. ¥(s,a)
is defined iff a is applicable in s, with v(s,a) being the
predicted outcome.

e cost: A — [0,00) is a cost function assigning a value to
each action. The cost value can have various meanings,
for example time, price or anything we want to optimize.

Any problem II defined as STRIPS by Definition 1 can be
translated to a transition system X and solved by the means
of path-searching algorithms.

In order to find a solution to a planning problem, we need
to find a path through the induced transition system, which
is typically done by one of the heuristic state-space search
algorithms.

Definition 3 (State-Space Search) State-space search al-
gorithm performs search over a graph G = (N, E), where
N is a set of nodes and F is a set of edges. Having a plan-
ning problem Il = (F, O, s;, sq4,¢) and its induced transi-
tion system X = (S, A,v,¢), N corresponds to S and E
corresponds to A. The search starts in s;, expanding each
found state with ~y, until a goal state is reached. In that case,
plan m can be returned as a sequence of actions applied at
each expansion of the search in order to reach the goal state.

State space of many problems can be very large and
exhaustive search may not be the most efficient way to
look for the solution. Generally speaking, state-space search
can be done blindly, however, additional information can
greatly improve its performance. This additional informa-
tion is added in the form of heuristic functions.

Heuristic function h(s) : s — R maps any state s € S
to a positive value. Heuristic function gives us an estimate of
path length from the current state s to a goal state. A func-
tion, which always maps h(s) to the length of shortest possi-
ble path is called perfect or optimal heuristic and is denoted
as h*.

Neural Networks

Neural networks have proved to be a very powerful tool in
many different domains. Here, we use the current state of
the art approach which uses feed-forward neural networks
that learn through back-propagation using Stochastic Gradi-
ent Descent (Ruder 2016).

Our primary aim lies in creating two networks, each one
to substitute a different part of the state-space search algo-
rithm. First network is used to replace the state-transition
function v in order to generate possible successor states in
the state-transition system as defined in Definition 2. The
second network is used to replace a heuristic function h(s),
which returns a number representing an estimate of the dis-
tance from state s to a goal state.

These two networks are implemented using convolutional
neural networks (CNNs) as described in (LeCun, Bengio,
and Hinton 2015).

The problem domains, in our case, have image-like grid
structures which makes CNNs a viable choice in trying to
extract information from the representations.

By replacing these parts of the state-space search, we
avoid the need of creating a symbolic representation of the
states which would have been necessary if we were to adhere
to classical architectures. Thus, in this manner, we make our
problem domains model free.

Attention for Neural Networks

In the recent past, by introducing the Transformer architec-
ture, attention networks have proven to be a great success as
shown in (Vaswani et al. 2017). In general, attention allows
the network to focus only on subsets of inputs and requires
the creation of attention masks.

In this work, we use soft attention in which the network
focuses on input values that are between 0 and 1 as opposed
to hard attention where the network focuses on either zeroes
or ones.

Masks are generated using convolutional layer and a soft-
max layer of the same width and heigth as the input, with
all values summing up to one. On having such a mask, we
can then multiply the input features, resulting in a modified
input with some of the features “emphasized” by the atten-
tion mask. The layers, which generate the attention masks
are also trained with the whole architecture.

Data Domains

One of the key challenges of implementing the proposed ap-
proach is obtaining a good quality data set in order to train
the networks. As CNNs are well suited to process data sets
organized in grids, we consider problem domains which can
be represented by a grid.

We use four problem domains; for each one of them, we
create generators in order to obtain enough data. Examples
of all four domains are shown in Figure 1.

First domain is a maze with one agent and one goal. The
agent can move only in its 4-neighborhood and every free
cell in the maze is accessible by the agent.

The second domain is the same, except we have multiple
goals in the map. Therefore, we call this one the multi-goal
maze. The goal in this domain is reached when the agent
arrives in one of the goals.

The third domain is a multi-agent maze where the same
rules apply, but we have the number of agents greater than
one and the same number of goals in the maze. All the agents
have to move at the same time and the goals are not assigned
to a specific agent. The goal is reached when every agent in
the map stands on a goal.

The last domain we use is the Sokoban puzzle which is
similar to the maze domains in terms of movement, but it
is more complicated because of the added box entity. Agent
can push a box if there’s a free space behind it and it’s not
possible to push multiple boxes at the same time. The main
goal is to move every box to an arbitrary goal position in the
map. Once every box is on a goal position, we reach the goal
state.

Expansion Network

In the state-space search (Definition 3), transition function
takes in a current state of the search and returns all its suc-

Single-agent maze Multi-goal maze

G

G
Multi-agent maze

Sokoban puzzle

Figure 1: Examples of all four problem domains - A denotes
agent, G denotes goal, B denotes box (in Sokoban domain)

cessors. The expansion network is used to generate these
SUCCesSsors.

By observing pairs of states (in form of images of the
mazes with the agent) without knowledge about actions that
connect them, we want to learn possible actions for the prob-
lem. Even for the most simple maze domain, the size of the
data set is important in order to train the network. The task
does not only lay in the locating the free spaces around the
agent. We need to make sure that the maze structure remains
the same and no rules are broken on performing the learned
actions.

We work with mazes represented as images, therefore, as
mentioned earlier, it is convenient to use a CNN for this task.
As we want to focus on the 4-neighborhood of the agent,
we choose the kernel as a 3x3 window. Since we want to
preserve the size of the input through the whole network,
the padding for our CNN is equal to one.

To additionally improve the network, we use residual con-
nections. A residual connection is an architecture modifica-
tion, which is often used in deep learning and has achieved
great results in learning an identity function, for example, in
ResNet image classification network (He et al. 2016). Fur-
thermore, residual connections resulted in a reduction in the
complexity of the network and an improvement in the re-
sults.

Our expansion network has one residual connection
which connects the input data with the output of the three
chained convolutional layers. After concatenating these two
parts of data, we process them through a 1x1 convolution to
adjust the number of channels to match the input. In order
to obtain even better results, we added normalization in the
form of dropout between the first three convolutional layers.
We can see the whole architecture in Figure 2.

Input and Output

The input of this network is the visual representation of the
problem encoded in one-hot representation. This gives us a
one-hot encoded vector for each cell in the problem’s im-
age, which tells us, which entity is in the cell based on the
placement of the ones and zeros in the vector.

The output of this network is exactly the same in size, and
it is similar to the one-hot encoding, however, the values on
the output give us a distribution of the reachable next states.
We can then use a threshold in order to extract the possible
future states from this output.

Loss Function

In this network, we want to learn probabilistic distributions
of the possible successor states of a current state. Our data
is one-hot encoded, which means that there is a vector for
each cell in the map or maze. According to the entity type
placed on that cell, we put 1 to the corresponding index in
the vector.

To train the network properly, we have to use a loss func-
tion suited for measuring the accuracy between true distribu-
tion and learned distribution of the possible successor states.
Therefore, we use logistic cross entropy as our loss function
for this network.

Heuristic Network

Another function in the state-space search (Definition 3) is
the heuristic function which aids the search process. Com-
putation of a heuristic is a non-trivial problem, especially in
the case of non-simplified visual representation.

Since the input data is still based on the visual represen-
tation of the problem, convolutional networks are a good
direction to explore. Inspired by the classical planning ap-
proaches for computing heuristics, we use attention to sim-
plify the problem. Such simplification is usually used in
classical planning heuristics in the form of relaxations or ab-
stractions (Ghallab, Nau, and Traverso 2016).

Input and Output

The heuristic network receives a one-hot encoded visual rep-
resentation of an input state. The label is the value of the h*
heuristic which is the length of the shortest path from the in-
put state to the closest goal state. Therefore, we want the net-
work to produce a single value for each input as well. This
generated value is the heuristic in the planning algorithm.

Although learning a heuristic estimator from optimal
plans sounds rather nonsensical (why to learn something we
know the ground truth for), it acts in this work more as a
proof of concept. The overall idea is to learn the heuristic
from the best information about the distances to the goal.
Since the learning process generalizes, it should be able to
provide heuristic estimates even for cases in which it did not
learn.

Loss Function and Data Set Structure

Training a network to return heuristic values requires opti-
mal plan lengths as labels for all the data. For each maze

Conv Conv Conv
I3 33 33
Input . C==k . k==k | k==C
WiHXCxN 7| pad=(1,1) 7| pad=(1,1} T pad=(1,1}
Relu Relu identity

residual connection.

—

Conv Conv
2(;111 k »l K 1}9(; y Output
i " WWxHXCxN
swish identity L

Figure 2: Expansion network architecture. Size of the input is width (W), heigth (H), number of channels (C) and number of
samples in a batch. Each convolutional layer Conv has size of its kernel, number of input channels and output channels of the
layer (C = k means C input channels and k output channels), padding and activation function. In this network, we use rectified
linear unit (ReLu), swish (modified ReLLu) or no activation (identity).

instance in the original data set, we randomly picked multi-
ple positions from all possible agent placements and added
those randomly picked samples with their computed labels
(h* values) into the data set. To train the network, we cre-
ated the batches by taking a selected number of positions
from each maze instance so that there were always multiple
different agent placements in the maze at one batch. This
is important, because loss function in this case has to be fo-
cused on the relation between the values in the same problem
instance and not just the pair (state, value).

Since neural networks represent a black-box approxima-
tion scheme, we cannot expect to ensure any properties of
the generated values. Therefore, we used satisficing plan-
ning for our experiments. In our case, the additional heuristic
information was provided by the trained heuristic network.

Another property which can influence the performance,
also held by the labels is monotonicity. Having monotonic
heuristic values for all the states provides us with a possibil-
ity of selecting the best states on just following the descent
of the state heuristic values. To get as close as possible to
this property, we implemented a custom loss function, which
measures how far off is the monotonicity of the learned val-
ues when compared to the h* values.

function loss (mx,y)

partial_losses = []

for every maze instance in batch
ixs = all indexes of the instance
data_diffs = mx[ixs] — transpose (mx[ixs])
labels_diffs = y[ixs] — transpose(y[ixs])
tmp = —data_diffs % sign(labels_diffs)+1
1 = sum(max(0, tmp)
partial _losses .add (1)

end

return sum(partial_losses)

end

Listing 1: Pseudocode of loss for the heuristic network

T

Input /\ [\ Output
WxHxC m \““”D WixHx(CM+C+2)

|
As:?)‘:;ﬂ Coordinates
WxHx e

Figure 3: Attention block used in the heuristic network ar-
chitecture - W is width of the input, H is height of the input,
C is number of channels of the input structure

Architecture

One of the most notable features in this architecture is the usage
of attention as described in section Attention for Neural Networks.
The is analogous to the relaxation technique (Ghallab, Nau, and
Traverso 2016) used in planning. If we imagine looking at a maze
and identifying interesting parts of it, such as crossroads or long
straight paths, we might simplify the problem enough to obtain a
distance estimate from the agent to the goal.

Implementation of attention was done by using convolutional
layers and using softmax over the first two dimensions of the input.
Meaning, at the end, we received the attention mask, which has the
same width and height as the input and all its values sum up to
one (soft attention). One problem which comes up on using atten-
tion is deciding on the number of attention masks required to find
enough attention-worthy places in the data. We experimented with
different numbers of attentions in the architecture while selecting
the networks that are further used in the planning experiments.

The input of this network is of the size W x H x C' x N; first
two dimensions are width and height of the data; the third is the
number of channels and the last one is number of samples in the
processed mini-batch. Size of the mini-batch has been deliberately
omitted in the architecture diagrams for simplification.

Conv Conv
3x3 3x3
|24=>48 | 48=>06 Dense | output
pad=(1,1) pad=(1,1) a6 == 1 Tl
swish swish

Conv Conv
%1 33
Input .| Aftention N o4 o 24==24
WrHrC > block »|CliCr2=> > pad=(1,1)
swish swish
Y
1
Attention
Masks
WixHxM

Figure 4: Heuristic network architecture

After creating M attention masks, we multiply the input data by
each of the masks, thereby concatenating the results. This results
in a data tensor of size M x C' 4 C + 2. We multiply each channel
of the data by each attention and after concatenating the results
with the original data, this multiplication is denoted in Figure 3 as
“multiplication”. Then, we add two last channels which are x and
y coordinates for the mazes. It was shown in the (Wei et al. 2019)
that for learning spacial information, it can be highly beneficial to
provide coordinates for the data. Therefore, we added coordinates
at the end of our data tensor. This whole computation happens in
the "attention block™ displayed in the Figure 3.

This created data tensor is then processed by multiple convolu-
tional layers with same padding that keeps the width and height of
the data the same throughout the whole network. After processing
through the convolutional layers, aggregation in the form of a sum
is performed over the first two dimensions, creating a vector of the
same size as the number of channels in the last convolutional layer.
Then, it is processed through a dense layer, returning one value,
which is our final heuristic value for the input.

That is the top level description of the architecture. We exper-
imented it with multiple small modifications to see if they influ-
ence the results. One modification is the number of attention layers
which we mentioned earlier. The second modification which we
denoted as an “attention block™ states, how many times we repeat
creating the attention masks and the large multiplication of these
with the input data. One case is using is only once, as described
above, at the beginning of the network. The other case is using five
of them, one between each of the two convolutional layers. This
case is displayed in Figure 5.

Experiments

Experiments in this work were conducted by training all described
networks and then comparing their performance with techniques
used in classical planning. To obtain each of the networks used in
the planning experiments, we had to train dozens of its versions
with different hyper-parameters to obtain the best possible one.
Comparison of these trained networks was performed by evalua-
tion functions.

In case of the expansion network, the adjusted hyper-parameters
were number of channels in the convolutional layers, size of the
convolutional kernel (in case of Sokoban), padding and number of
epochs.

In case of the heuristic network, adjusted hyper-parameters were
padding, number of channels in the convolutional layers, number
of attention masks, number of used attention blocks and number of

epochs.

Expansion Network Evaluation

Evaluation function for the expansion network is mostly used to
check how accurately it can generate the possible successor states
while also checking whether the network structure stays the same
during the process. All the successor states in the output distribu-
tion also have to be valid and actually reachable. Same goes the
other way - it is not desired to obtain any unreachable states in the
output distribution. Based on these factors, we tested the trained
expansion networks.

Since we use three domains which are very similar, we trained
one expansion network for maze, multi-goal maze and multi-agent
maze domains. Since the input dimension is different for Sokoban,
we trained a separate expansion network for the Sokoban domain.

In Table 1, we can see results of the evaluation. Wall difference
denotes the largest value assigned to a cell which is not supposed
to be a wall. This means that we aim for the lowest possible values.
In the evaluation table, it is obvious that wall placement is not a big
problem for any of the networks.

Minimal correct step denotes the smallest value assigned to a
cell which should contain an agent. The smaller the values, the less
probable it is that agent can be located on the cell. In case of maze-
exp-net, we can see that the value is 0.23101, which means that the
least probable correct agent placement has this value. In the case of
sokoban-exp-net, this value is very small, which means, that some
of the possible successor states will not be discovered at all.

Maximal wrong step is analogical to the previous case. Here,
we look for very small values because it denotes the highest pos-
sible wrong agent placement. In case of maze-exp-net, the value
is very small, so there are no invalid successor states generated. In
case of sokoban-exp-net, the value is very high, which means that
invalid successor states can be generated during the search.

Therefore, the expansion network for Sokoban has not been suc-
cessfully implemented and the complexity of the problem is prob-
ably higher then we first anticipated. This results in bad results for
the planning experiments that use this expansion network as a state-
transition function.

Heuristic Network Evaluation

Evaluation of the heuristic network is a more complicated prob-
lem since we’re trying to train a monotonic function. Therefore,
we took a set of optimal plans and each step of the plan was as-
signed a value by the heuristic network. Then we ordered the steps

Conv
33
Attention 24=>24 Attention
block pad=(1,1} block

Conv

Input Attention

1
Wt block | [—>{CMCH2=224

swish swish

Conv Conv

33 33 Dense
24=>48 Aftention 48=>96 Attention Output
pad=(1,1) block pad=(1,1) > block 96 ==1

swish swish

Attention Attention Altention
Masks Masks Masks
WieHxM WixHxM WitHxM

Altention Altention
Masks Masks
WitHxM WitHxM

Figure 5: Heuristic network architecture using 5 attention blocks

Minimal correct step Maximal wrong step

Model | Wall difference
maze-exp-net 1.85346e-5
sokoban-exp-net 0.00241

1.33777e-11

0.23101 1.5056f-7

0.96589

Table 1: Evaluation of expansion networks

by the heuristic network generated values and measured how far is
the ordering from the ordering in the original optimal plan.

Planning Experiments

Based on the evaluation functions, we chose both expansion and
heuristic networks which are used in the planning experiments.
There are two expansion networks, one for Sokoban and one for
all the three maze-related domains. There are also four heuristic
networks, one for each problem domain.

For every domain, we implemented a planner with the same al-
gorithms and the same heuristics. There are three state-space search
algorithms. The first one is greedy best-first search (GBFS) which
is guided by the computed heuristic values. State with the lowest
value is always expanded first because the heuristic suggests it is
closest to the goal.

Next one is the best-first search algorithm (BFS) with the same
h value computation as in A*. This means, we don’t expand the
states based only on the heuristic value but we use sum of the
heuristic with length of the path from the initial state to the cur-
rent state.

The last one is multi-heuristic search (MH-GBFS) using tie-
breaking (Roger and Helmert 2010). It uses a main heuristic and
a second heuristic in case there’s a tie between the main heuristic
values. Since the order of heuristics is important in this case, we
computed the experiments with all possible combinations of pairs
of heuristics.

For heuristic, we can select a blind heuristic, Euclidean dis-
tance, HE'F heuristic (Hoffmann 2001), LM-cut (Pommerening
and Helmert 2013) and the heuristic neural network. For use in
multi-heuristic search, they can be arbitrarily combined.

Since we’re in the field of satisficing planning, we want to com-
pare our proposed methods against the state of the art in the field.
One of the most successful planners in the community is LAMA
(Richter and Westphal 2010), which uses HT'F" heuristic together
with landmarks. Therefore, we decided to implement both HY'¥
and LM-cut (which uses landmarks) and compare the approach
with our heuristic network.

For each problem domain, we created 50 new problem instances
which are not in any of the training data sets we used earlier.
To compare the performance of all the planner configurations, we
measured length of the output plans and number of expanded states
during the search. There is also coverage denoted as cvg, which
states the percentage of solved problems from the set of 50. All the

experiments were executed with time limit set to 10 minutes per
one problem instance on the same hardware.

Coverage Comparison We decided to compare the regular
state-transition function and the expansion network by measuring
coverage of the planners. Coverage tells us how many of the given
problems were solved by the planner in a given time limit per prob-
lem.

In Tables 2, 3 and 4, we can see coverage for each of the state-
space search algorithms used in the planning experiments. One big
difference between the regular state-transition function and the ex-
pansion network is the zero percent coverage on Sokoban. The ex-
pansion network for Sokoban was not a success and we did not
manage to train a well functioning expansion network for this do-
main as we described earlier. On the other hand, for the rest of
the domains, the coverage is the same as in the case of the regular
state-transition function.

Heuristic Performance Comparison In order to compare
performances of all heuristics provided in the planner, including
the heuristic network, we measured length of the resulting plan and
number of expanded states during the search.

In the maze domain, both GBFS and BFS results show that the
performance of the heuristic network is comparable to the other
heuristics. Length of the resulting plans is the same in most cases
and the only heuristic outperforming the heuristic network in terms
of expanded states is the LM-cut heuristic. In MH-GBFS, using
the heuristic network as a primary heuristic function provides us
with results comparable to other heuristics. LM-cut seems to be
the only heuristic which is giving a lot better results in terms of the
expanded states. Results of all three search algorithms are in Figure
6.

] In the multi-goal maze domain, the results are very similar.
GBFS performance is the best possible, same as H"' ™ and LM-cut.
In BFS, heuristic network even outperforms both of these in the
average number of expanded states. The MH-GBEFS results show
that heuristic network as a primary heuristic gives great results. All
results are in Figure 7.

In the multi-agent domain, the number of expanded states are a
lot higher for the heuristic network, as we can see in Figure 8 for
all three search algorithms. This can be caused by the complexity
of this problem. Simultaneous movement of multiple agents in the
maze is a lot more complicated than movement of just one. Also,

State-transition function Expansion Network
maze mg-maze ma-maze sokoban | maze mg-maze ma-maze sokoban
blind 1 1 1 1 1 1 1 0
euclid 1 1 1 1 1 1 1 0
hff 1 1 1 0 1 1 1 0
Imcut 1 1 0.94 0 1 1 0.94 0
nn 1 1 1 1 1 1 1 0
Table 2: Coverage comparison for GBFS
State-transition function Expansion Network
maze mg-maze ma-maze sokoban | maze mg-maze ma-maze sokoban
blind 1 1 1 1 1 1 1 0
euclid 1 1 1 1 1 1 1 0
hff 1 1 1 0 1 1 1 0
Imcut 1 1 0.94 0 1 1 0.94 0
nn 1 1 1 1 1 1 1 0
Table 3: Coverage comparison for BFS
State-transition function Expansion Network
maze mg-maze ma-maze sokoban | maze mg-maze ma-maze sokoban
euclid, hff 1 1 1 0 1 1 1 0
euclid, Imcut 1 1 0.74 0 1 1 0.78 0
euclid, nn 1 1 1 1 1 1 1 0
hff, eucl 1 1 1 0 1 1 1 0
hff, Imcut 1 1 0.98 0 1 1 0.96 0
hff, nn 1 1 1 0 1 1 1 0
Imcut, eucl 1 1 0.98 0 1 1 0.96 0
Imcut, hff 1 1 0.98 0 1 1 0.96 0
Imcut, nn 1 1 0.98 0 1 1 0.96 0
nn, eucl 1 1 1 1 1 1 1 0
nn, hff 1 1 1 0 1 1 1 0
nn, Imcut 1 1 0.82 0 1 1 0.82 0

Table 4: Coverage comparison for MH-GBFS

the goals are not assigned, therefore it becomes even more compli-
cated in terms of computing the distance estimate to a goal state.

In Sokoban domain, H"*" and LM-cut were not capable of solv-
ing the problems in the given time limit. The coverage for both
of these heuristics is equal to zero. In the GBFS, heuristic network
found the shortest plans on average. Also, in BFS, the average num-
ber of expanded states was also the lowest when using the heuristic
network. We can see the results in Figure 9.

This shows us that the heuristic network is performing better in
domains with one agent. Another advantage of the heuristic net-
work is its computation time. Compared to H'F and LM-cut, the
computation is much faster, especially on a complicated domain
like Sokoban, as reflected in the coverage comparison.

Conclusions

In this work, we have proposed replacement of two key parts of
search-based automated planning algorithm by deep neural net-
works. One network learns the planning model from image rep-
resentation of state transitions. The other network learns heuristic
function from image representations of states and their distances
to a goal. Such architecture allows for use of automated planning
for model-free problems. Experimentally, we have shown the effi-
ciency of such search is on par with the classical planning heuristics

and therefore a viable direction for future research.

Although the work provides promising results, it is preliminary
in several aspects. First of all, the heuristic function is learned from
optimal plans, which makes sense only as an optimistic placeholder
for cleverly generated (sub-)sequences of actions towards goals
(e.g. by action backward chaining). Other future work is to design
a neural network usable for variable sizes of the inputs, i.e. one
neural network for different maze/Sokoban puzzle sizes.

Acknowledgements The work was supported by the Czech
Science Foundation (grant no. 18-24965Y).

References
Asai, M., and Fukunaga, A. 2017. Classical planning in deep latent
space: From unlabeled images to pddl (and back). In NeSy.
Asai, M., and Fukunaga, A. 2018. Classical planning in deep latent
space: Bridging the subsymbolic-symbolic boundary. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016. Learn-
ing to rank for synthesizing planning heuristics. arXiv preprint
arXiv:1608.01302.

Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated planning
and acting. Cambridge University Press.

GBFS - maze domain

B Average plan length
m Average number of expanded states

none

0

eucl Imcut nn

B Average plan length

BFS - maze domain

M Average pla

M Average number of expanded states

MH-GBFS - maze domain

nlength ™ Average number of expanded states

16
14
12
10
8
6
4
2
I II I 0
& O & O & b
) "’ \:‘\ P °‘ T \.‘ \-Q)
& b\& &S & o & & & & <$‘ ,\\o\
none eucl Imcut nn © S

Figure 6: Performance of heuristics for maze domain in all search algorithms

GBFS - multi-goal maze
domain

W Average path length

m Average number of expanded states

BFS - multi-goal maze
domain

B Average path length

m Average number of expanded states

MH-GBFS - multi-goal maze domain

m Average path length

W Average number of expanded states

20 20
. . FHEnnunnnnnn
10 I 10 I
5 Q\\og&oc}‘{\ob‘é\&
< N o ST
Nnnen Sl Sdeasdiadse
none eucl hff Imcut nn none eucl hff Imcut nn e A \<° \& A <
Figure 7: Performance of heuristics for multi-goal maze domain in all search algorithms
GBFS - multi-agent maze BFS - multi-agent maze
domain domain
m Average path length W Average path length MH-GBFS - multi-agent maze domain
m Average number of expanded states m Average number of expanded states W Average path length
250,00 600,00 ® Average number of expanded states
200,00 500,00 200,00
150,00
150,00 400,00
300,00 100,00
100,00 200,00 50,00 1 I
0,00 = == ml mE me owE we me ms il ml al
50,00 100,00 I & > & > & > & &
0,00 l - W 000 - M o n . @\ >®§L ‘&‘:\\ c\(\ ' & ';00*‘ owoé‘i‘é,
none eucl hff Imcut nn none eucl hff Imcut nn S N « N ©

Figure 8: Performance of heuristics for multi-agent maze domain in all search algorithms

GBFS - Sokoban domain

W Average path length

m Average number of expanded states

BFS - Sokoban domain

W Average path length

m Average number of expanded states

MH-GBFS - Sokoban domain

m Average path length
W Average number of expanded states

1500
1000

500

4000 5000
3000 4000
3000
2000
2000
1000 I 1000 I I
0 — u 0
none eucl nn none eucl

0

eucl, nn

Figure 9: Performance of heuristics for Sokoban domain in all search algorithms

nn, eud

Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone, A. 2019.
Learning neural search policies for classical planning. arXiv
preprint arXiv:1911.12200.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770-778.

Hoffmann, J. 2001. Ff: The fast-forward planning system. Al
magazine 22(3):57-57.

LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning. nature
521(7553):436-444.

Pommerening, F., and Helmert, M. 2013. Incremental Im-cut.
In Twenty-Third International Conference on Automated Planning
and Scheduling.

Richter, S., and Westphal, M. 2010. The lama planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39:127-1717.

Roger, G., and Helmert, M. 2010. The more, the merrier: Com-
bining heuristic estimators for satisficing planning. In Twentieth
International Conference on Automated Planning and Scheduling.

Ruder, S. 2016. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention is
all you need. In Advances in neural information processing sys-
tems, 5998-6008.

Wei, X.; Barsan, I. A.; Wang, S.; Martinez, J.; and Urtasun, R.
2019. Learning to localize through compressed binary maps. In

Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 10316-10324.

