Hierarchical Reinforcement Learning in StarCraft 11
with Human Expertise in Subgoals Selection

Xinyi Xu*!, Tiancheng Huang?

Pengfei Wei', Akshay Narayan', Tze-Yun Leong!
'NUS, School of Computing, Medical Computing Lab,
{xuxinyi,weipf,anarayan,leongty } @ comp.nus.edu.sg
2NTU, School of Computer Science and Engineering,
thuang013 @e.ntu.edu.sg

Abstract

This work is inspired by recent advances in hierarchical re-
inforcement learning (HRL) (Barto and Mahadevan 2003;
Hengst 2010), and improvements in learning efficiency from
heuristic-based subgoal selection, experience replay (Lin
1993; Andrychowicz et al. 2017), and task-based curricu-
lum learning (Bengio et al. 2009; Zaremba and Sutskever
2014). We propose a new method to integrate HRL, expe-
rience replay and effective subgoal selection through an im-
plicit curriculum design based on human expertise to support
sample-efficient learning and enhance interpretability of the
agent’s behavior. Human expertise remains indispensable in
many areas such as medicine (Buch, Ahmed, and Maruthappu
2018) and law (Cath 2018), where interpretability, explain-
ability and transparency are crucial in the decision making
process, for ethical and legal reasons. Our method simpli-
fies the complex task sets for achieving the overall objec-
tives by decomposing them into subgoals at different levels
of abstraction. Incorporating relevant subjective knowledge
also significantly reduces the computational resources spent
in exploration for RL, especially in high speed, changing, and
complex environments where the transition dynamics cannot
be effectively learned and modelled in a short time. Experi-
mental results in two StarCraft IT (SC2) (Vinyals et al. 2017)
minigames demonstrate that our method can achieve better
sample efficiency than flat and end-to-end RL methods, and
provides an effective method for explaining the agent’s per-
formance.

Introduction

Reinforcement learning (RL) (Sutton and Barto 2018) en-
ables agents to learn how to take actions, by interacting
with an environment, to maximize a series of rewards re-
ceived over time. In combination with advances in deep
learning and computational resources, the Deep Reinforce-
ment Learning (DRL) (Mnih et al. 2013) formulation has
led to dramatic results in acting from perception (Mnih et
al. 2015), game playing (Silver et al. 2016), and robotics
(Andrychowicz et al. 2020). However, DRL usually re-
quires extensive computations to achieve satisfactory per-
formance. For example, in full-length StarCraft II (SC2)

*Corresponding author
Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

games, AlphaStar (Vinyals et al. 2019) achieves superhu-
man performance at the expense of huge computational re-
sources'. Training flat DRL agents even on minigames (sim-
plistic versions of the full-length SC2 games) requires 600
million samples (Vinyals et al. 2017) and 10 billion sam-
ples (Zambaldi et al. 2019) for each minigame, and re-
peated with 100 different sets of hyper-parameters, approx-
imately equivalent to over 630 and 10,500 years of game
playing time respectively. Even with such large number
of training samples, DRL agents are not yet able to beat
human experts at some minigames (Vinyals et al. 2017;
Zambaldi et al. 2019).

We argue that learning a new task in general or SC2
minigames in particular is a two-stage process, viz., learn-
ing the fundamentals, and mastering the skills. For SC2
minigames, novice human players learn the minigame fun-
damentals reasonably quickly by decomposing the game
into smaller, distinct and necessary steps. However, to
achieve mastery over the minigame, humans take a long
time, mainly to practice the precision of skills. RL agents,
on the other hand, may take a long time to learn the fun-
damentals of the gameplay but achieve mastery (stage two)
efficiently. This can be observed from the training progress
curves in (Vinyals et al. 2017) which shows spikes followed
plateaus of reward signals instead of steady and gradual in-
creases.

We want to leverage human expertise to reduce the
‘warm-up’ time required by the RL agents. The Hierarchi-
cal Reinforcement Learning (HRL) framework (Bakker and
Schmidhuber 2004; Levy et al. 2019) comprises a general
layered architecture that supports different levels of abstrac-
tions corresponding to human expertise and agent’s skills at
the low-level manoeuvres. Intuitively, HRL provides a way
for combining the best from human expertise and agent by
organizing the inputs from humans at a high level (more ab-
stract) and those from agents at a lower level (more precise).
In this work, we extend the HRL framework to incorporate
human expertise in subgoal selection. We demonstrate the
effects of our methods in mastering SC2 minigames, and
present preliminary results on sample efficiency and inter-

! According to (Vinyals et al. 2019), for each of their 12 agents,
they conduct training on 32 TPUs for 44 days.

pretability over the flat RL methods.

The rest of the paper is organized as follows. We briefly
outline the background information in the next section. Next,
we describe our proposed methodology. Further, we discuss
the related works and present our experimental results. We
then conclude the paper highlighting opportunities for future
work.

Preliminaries

Markov decision process and Reinforcement learning:
A Markov decision process (MDP) is a five-tuple
(S, A, T,R,v), where, S is the set of states the agent can
be in; A is the set of possible actions available for the agent;
R : S x A~ Ris the reward function, 7 : S x A — ASis
the transition function; and v € [0, 1] is the discount fac-
tor that denotes the usefulness of the future rewards. We
consider the standard formalism of reinforcement learning
where an agent continuously interacts with a fully observ-
able environment, defined using an MDP. A deterministic
policy is a mapping 7 : S — A and we can describe
a sequence of actions and reward signals from the envi-
ronment. Every episode begins with an initial sy. At each
t, the agent takes an action a; = m(s:), and gets a re-
ward r; = R(s¢, ar). At the same time, s;41 is sampled
from T (s¢, a;). Over time, the discounted cumulative re-
ward, called return, is calculated as: Ry = Y=, 7'~ 'r;. The
agent’s task is to maximize the expected return Es,[Ro|so].
Furthermore, the Q-function (or action-value function) is
defined as Q7 (s¢,ar) = E[R4|st,at]. Assuming an opti-
mal policy 7* : Q™ (s,a) > Q"(s,a) Vs € S,a €
A, for any possible 7. All optimal policies have the same Q-
function called the optimal Q-function, denoted QQ*, satisfy-
ing this Bellman equation:

Q"(s,a) = Egn(s,a) [R(s, 0) +7max Q" (s", a')].

Q-function Approximators The above definitions enable
one possible solution to MDPs: using a function approxi-
mator for Q*. Deep-Q-Networks (DQN) (Mnih et al. 2013)
and Deep Deterministic Policy Gradients (DDPG) (Lilli-
crap et al. 2016), are such approaches tackling model-free
RL problems. Typically, a neural network @ is trained to
approximate Q*. During training, experiences are gener-
ated via an exploration policy, usually e-greedy policy with
the current (). The experience tuples (s, as, 7, S¢+1) are
stored in a replay buffer. () is trained using gradient de-
scent with respect to the loss L := E[Q(s¢, a;) — y¢]?, where
Yyt = r¢ +ymaxg e Q(Se41, a’) with experiences sampled
from the replay buffer.

An exploration policy is a policy that describes how the
agent interacts with the environment. For instance, a pol-
icy that picks actions randomly encourages exploration. On
the other hand, a greedy policy with respect to @, as in
mo(s) = argmax,c 4 Q(s, a), encourages exploitation. To
balance these, a standard approach of e-greedy (Sutton and
Barto 2018) is adopted: with probability € take a random ac-
tion, and with probability 1 — € take a greedy action.

Goal Space G Schaul et al. (2015) extended DQN to include
a goal space G. A (sub)goal can be described with specifi-
cally selected states, or via functions such as f : S — [0, 1],

either a state is a goal or not. Introducing G modifies the
original reward function R slightly: Vg € G, Ry, : S X
A= R, R(s,alg) = Rg4(s,a). At the beginning of each
episode, in addition to sg, the initialization includes a fixed
g to create a tuple (sg, g). Other modifications naturally fol-
low: 7: S8 X G — A, and Q™ (s¢, ar, g) = E[R¢|st, at, g].
Experience Replay Lin (1993) proposed the idea of us-
ing ‘experiences buffers’ to help machines learn. For-
mally, a single time step experience is defined as a tuple
(8¢, a¢,rt, S¢+1) and more generally an experience can be
constructed by concatenating multiple consecutive experi-
ence tuples.

Curriculum Learning Methods in this framework typically
explicitly or implicitly design a series of tasks or goals (with
gradually increased difficulties) for the agent to follow and
learn, i.e., the curriculum (Bengio et al. 2009; Weng 2020).
StarCraft IT SC2 is a real-time-strategy (RTS) game, where
players command their units to compete against each other.
In an SC2 full-length game, typically players start out by
commanding units to collect resources (minerals and gas) to
build up their economy and army at the same time. When
they have amassed a sufficiently large army, they com-
mand these units to attack their opponents’ base in order
to win. SC2 is currently a very promising simulation envi-
ronment for RL, due to its high flexibility and complexity
and wide-ranging applicability in the fields of game theory,
planning and decision making, operations optimization, etc.
SC2 minigames, as opposed to full-length games described
above, are built-in episodic tutorials where novice players
can learn and practice their skills in a controlled and less
complex environment. Some relevant skills include collect-
ing resources, building certain army units, etc.

Proposed Methodology

We propose a novel method of integrating the advantages
of human expertise and RL agents to facilitate fundamentals
learning and skills mastery of a learning task. Our method
adopts the principle of Curriculum Learning (Bengio et al.
2009) and follows a task-oriented approach (Zaremba and
Sutskever 2014). The key idea is to leverage human ex-
pertise to simplify the complex learning procedure, by de-
composing it into hierarchical subgoals as the curriculum
for the agent. More specifically, we factorize the learning
task into several successive subtasks indispensable for the
agent to complete the entire complex learning procedure.
The customized reward function in each subtask implic-
itly captures the corresponding subgoal. Importantly, these
successive subgoals are determined so that they are gradu-
ally more difficult to improve learning efficiency (Bengio
et al. 2009; Justesen et al. 2018). With defined subgoals,
we use the Experience Replay technique to construct the
experiences to further improve the empirical sample effi-
ciency (Andrychowicz et al. 2017; Bakker and Schmidhu-
ber 2004; Levy et al. 2019). Furthermore, adopting clearly
defined subtasks and subgoals enhances the interpretabil-
ity of the agent’s learning progress. In implementation, we
customize SC2 minigames to embed human expertise on
subgoal information and the criteria to identify and se-
lect subgoals during learning. Therefore, the agent learns

the subpolicies and combines them in a hierarchical way.
By following a well-defined decomposition of the original
minigame into subtasks, we can choose the desired state of
a previous subtask to be the starting conditions of the next
subtask, thus completing the connection between subtasks.

Hierarchy: Subgoals and Subtasks

Our proposed hierarchy is composed of subgoals, which col-
lectively divide the problem into simpler subtasks that can
be solved easily and efficiently. Each subgoal is implicitly
captured as the desired state in its corresponding subtask,
and we refer to the agent’s skills to reach a subgoal its cor-
responding subpolicy. The rationale behind this is as fol-
lows. First, the advantages of human expertise and the agents
are complementary to each other in terms of learning and
mastering the task. Human players are good at seeing the
big picture and thus identifying the essential and distinct
steps/skills very quickly. On the other hand, agents are pro-
ficient in honing learned skills and maneuvers to a high de-
gree of precision. Second, a hierarchy helps reduce the com-
plexity of search space via divide-and-conquer. Lastly, this
method enhances the interpretability of the subgoals (and
subpolicies).

Figure 1 illustrates the concept of subgoals and subpoli-
cies with a simple navigation agent. The agent is learning to
navigate to the flag post from the initial state sg. One possi-
ble sequence of the states is s1, . . ., s5. Therefore, the entire
trajectory can be decomposed into subgoals; for instance,
Levy et al. (2019) used heuristic-based subgoal selection cri-
teria (in Figure 1 these selected subgoals, go, . . ., g4, are de-
noted by orange circles). On the other hand, the sequence
of red nodes denote subgoals of our method. We highlight
that this sequence would constitute a better guided and more
efficient exploration path. In addition this sequence is better
aligned with the game where some states are the prerequi-
sites for other states (illustrated as the black dashed arrows).
O State reached by agent E

O Subgoal sampled automatically
O Subgoal sampled with human

expertise

Figure 1: Navigation Agent

Subgoals Selection and Experience Replays

Subgoal Design and Selection. We use the similar method
for constructing experiences with a goal space as previous
works (Andrychowicz et al. 2017; Levy et al. 2019). How-
ever, our method introduces human expertise in construct-
ing the hierarchy and subgoals selection. In (Andrychow-
icz et al. 2017), the hindsight experience replay buffer is

Figure 2: Collect Minerals and Gas. From left to right, top to
bottom:(1)-(4): (1) to build refineries; (2) to collect gas with
built refineries; (3) both tasks in (1) and (2); (4) all three
tasks in (1), (2), (3) and collect minerals.

Figure 3: Build Marines. From left to right, top to
bottom:(1)-(4): (1) to build supply depots; (2) to build bar-
racks; (3) to build marines with (1) and (2) already built; (4)
all three tasks in (1), (2), (3).

constructed via random sampling from the goal space and
concatenating the sampled goals to an already executed se-
quence {si,...,sr}, hence the name hindsight. The sub-
goals are initialized with heuristic-based selection and up-
dated according to hindsight actions. For example, in Fig-
ure 1, given a predetermined subgoal g, the agent might not
successfully reach it, and instead ends up in s;. In this case,
the subgoal set in hindsight is s; (updated from gg).

Our method distinguishes in that the (sub)goals selection
strategy is designed with human expertise, to give a fixed but
suitable decomposition of the learning task. Furthermore,
we exploit the underlying sequential relationship among the
subgoals as in the game some states are the prerequisites for
others. Hence, certain actions are required to be performed
in order. Furthermore, another reason for introducing hu-
man expertise rather than using end-to-end learning alone
is that compared with the environments investigated in pre-
vious HRL works, SC2 encompasses a significantly larger
state-action space that prohibits a sample-efficient end-to-
end learning strategy. As a result, our method enjoys an
added advantage of interpretability of the selected subgoals.

Subtasks Implementations. We leverage the customizabil-

ity of SC2 minigames to carefully design subtasks to en-
able training of the corresponding subpolicies, as suggested
in (Barto and Mahadevan 2003). We illustrate with the Col-
lect Minerals and Gas (CMAG) minigame, as shown and
described in Figure 2. There are several distinct and sequen-
tial actions the player has to perform to score well: 1. com-
manding the Space Construction Vehicles (SCVs) - basic
units of the game, to collect minerals; 2. having collected
sufficient minerals, selecting SCVs to build the gas refinery
(a prerequisite building for collecting vespene gas) on spe-
cific locations with existing gas wells; 3. commanding the
SCVs to collect vespene gas from the constructed gas refin-
ery; 4. producing additional SCVs (at a fixed cost) to opti-
mize the mining efficiency. And there is a fixed time dura-
tion of 900 seconds. The challenge of CMAG is that all these
actions/subpolicies should be performed in an optimized se-
quence for best performance. The optimality depends on the
order, timing, and the number of repetitions of these ac-
tions. For instance, it is important not to under/over-produce
SCVs at a mineral site for optimal efficiency. Hence, we
implemented the following subtasks: BuildRefinery, Collect-
GasWithRefineries and BuildRefinieryAndCollectGas. In the
first two subtasks, the agent learns the specific subpolicies to
build refineries and to collect gas (from built refineries), re-
spectively, while in the last subtask the agent learns to com-
bine them. Based on the same idea, the complete decomposi-
tion for CMAG is given by [CMAG, BuildRefinery, Collect-
GasWithRefineries, BuildRefineryAndCollectGas, CMAG]
where the first CMAG trains the agent to collect minerals,
and the last CMAG trains it to combine all subpolicies and
also ‘re-introduces’ the reward signal for collecting miner-
als to avoid forgetting (Zaremba and Sutskever 2014). Sim-
ilarly, for the BuildMarines (BM) minigame, shown in Fig-
ure 3, the sequential steps/actions are: 1. commanding the
SCVs to collect minerals; 2. having collected sufficient min-
erals, selecting SCVs to build a supply depot (a prerequi-
site building for barracks and to increase the supplies limit);
3. having both sufficient minerals and a supply depot, se-
lecting SCVs to build barracks; 4. having minerals, a sup-
ply depot and barracks and with current unit count less than
the supplies limit, selecting the barracks to train marines.
The fixed time duration for BM is 450 seconds. Therefore,
we implemented the corresponding subtasks: BuildSupply-
Depots, BuildBarracks, BuildMarinesWithBarracks and the
complete decomposition for BM is [BuildSupplyDepots,
BuildBarracks, BuildMarinesWithBarracks, BM]. Note we
do not set BM as a first subtask as for CMAG because
CMAG contains both reward signals for minerals and gas,
so it is an adequate simple task for the agent to learn to col-
lect minerals. However, BM has only the reward signals for
training marines, thus too difficult as the first subtask.

Construct Experience Replay for Each Subtask. With
the designed subtasks represented by our customized
minigames, constructing experience replays is straightfor-
ward. For a subtask, a predetermined subgoal g; is implicitly
captured in its customized minigame (e.g., to build barracks,
to manufacture SCVs, etc.) using a corresponding reward
signal, so that the agent learns to reach g;. For the immedi-
ate subsequent subtask, we set its initial conditions to be the

completed subgoal g;. So, the agent learns to continue on
the basis of a completed g;. It is an implicit process because,
when learning to reach subgoal g;1, the agent does not see
or interact directly with the reward signal corresponding to
g;. For example, between two ordered subtasks CollectMin-
erals and BuildRefinery, the agent learns to collect minerals
first and starts with some collected minerals in the latter with
the sole objective of learning to build refineries.

Off-policy learning and PPO. Off-policy learning is a
learning paradigm where the exploration and learning are
decoupled and take place separately. Exploration is mainly
used by the agent to collect experiences or ‘data points’ for
its policy function or model. Learning is then conducted on
these collected experiences, and Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017) is one such method. Its
details are not the focus of this work and omitted here.

Algorithm. We describe the HRL algorithm with human
expertise in subgoal selection here. The pseudo-code is
given in Algorithm 1. For a learning task, a sequence of sub-
tasks is designed with human expertise to implicitly define
the subgoals and we refer to our customized SC2 minigames
as subtasks I';,0 < ¢ < m for the learning task. We pre-
define reward thresholds thresholds € R™, for all sub-
tasks. As the agent’s running average reward is higher than
a threshold, this agent is considered to have learnt the corre-
sponding subtask well and will move to the subsequent sub-
task. We use learner £ to denote the agent and to describe
how it makes decisions and takes actions. It can be repre-
sented by a deep neural network, and parametrized by .
In addition, we define a sample count ¢ and sample limit n.
Sample count c refers to the number of samples the agent has
used for learning a subtask. Sample limit n refers to the total
number of samples allowed for the agent for the entire learn-
ing task, i.e., for all subtasks combined. ¢ and n together are
used to demonstrate empirical sample efficiency.

With these definitions and initializations, the algorithm
takes the defined sequence of subtasks I' with correspond-
ing thresholds and initiates learning on these subtasks in
the same sequence. During the process, a running average
of the agent’s past achieved rewards is kept for each sub-
task, represented by the API call test (). For each subtask
I';, either the agent completely exhausts its assigned sample
limit | | or it successfully reaches the thresholds;. If the
running average of past rewards > thresholds;, the agent
completes learning on I'; and starts with I';1; the process
continues until all subtasks are learned. We follow the explo-
ration policy in preliminaries and adopt an e-greedy policy,
represented by explore () in Algorithm 1.

Related Work

Experience Replay RL has achieved impressive develop-
ments in robotics (Singh et al. 2019), strategic games such
as Go (Silver et al. 2017), real-time strategy games (Zam-
baldi et al. 2019; Vinyals et al. 2019) etc. Researchers have
attempted in various ways to address the challenge of goal-
learning, reward shaping to get the ‘agent’ to learn to mas-
ter the task, and yet not overfit to the particular instances of
the goals or reward signals. Experience Replay (Lin 1993)
is a technique to store and re-use past records of executions

Algorithm 1 HRL with Human Expertise in Subgoal Selec-
tion
Input: subtasks I';,0 <7 <m
Input: reward thresholds thresholds € R™
Input: learner £, parametrized by .
Input: sample count ¢, sample limit n.
for 0 <i <mdo
c+0
while c <= [2 | do
experiences < explore(L,T;)
¢ < ¢+ |experiences|

Wy +PPO(Wc, experiences) > off-policy
iftest (W) > thresholds; then
Break > Go to next subtask
end if
end while
end for

(along with the signals from the environment) to train the
‘agent’, achieving efficient sample usage. Mnih et al. (2013)
employed this technique together with Deep-Q-Learning to
produce state-of-the-art results in Atari, and subsequently
Mnih et al. (2015) confirmed the effectiveness of such ap-
proach under the stipulation that the ‘agent’ only sees what
human players would see, i.e., the pixels from the screen and
some scoring indices.

Curriculum Learning Bengio et al. (2009) hypothesized
and empirically showed that introducing gradually more
difficult examples speeds up the online learning, using a
manually designed task-specific curriculum. Zaremba and
Sutskever (2014) experimentally showed that it is important
to mix in easy tasks to avoid forgetting. Justesen et al. (2018)
demonstrated that training an RL agent over a simple cur-
riculum with gradually increasing difficulty can effectively
prevent overfitting and lead to better generalization.

Hierarchical Reinforcement Learning (HRL) HRL and
its related concepts such as options (Sutton, Precup, and
Singh 1999) macro-actions (Hauskrecht et al. 1998), or
tasks (Li, Narayan, and Leong 2017) were introduced to
decompose the problem, usually a Markov decision pro-
cess (MDP), into smaller sub-parts to be efficiently solved.
We refer the readers to (Barto and Mahadevan 2003; Hengst
2010) for more comprehensive treatments. We describe two
tracks of related works most relevant to our problem. Bakker
and Schmidhuber (2004) proposed a two-level hierarchy, us-
ing subgoal and subpolicy to describe the learning taking
place at the lower level of the hierarchy. Levy et al. (2019)
further articulated these ideas, and explicitly combined them
with Hindsight Experience Replay (Andrychowicz et al.
2017) for better sample efficiency and performance. Another
similarly inspired approach called context sensitive rein-
forcement learning (CSRL) introduced by Li, Narayan, and
Leong (2017) employed the hierarchical structure to enable
effective re-use of learnt knowledge of similar (sub)tasks
in a probabilistic way. In CSRL, instead of Experience Re-
play, efficient simulations over constructed states are used
in learning, able to learn both the tasks, and the environment
(the transition and reward functions). CSRL scales well with

state space, and is relatively easily parallelizable.

StarCraft II In addition to (Zambaldi et al. 2019), sev-
eral works addressed some of the challenges presented by
SC2. In a real-time strategy (RTS) game such as SC2, the
hierarchical architecture is an intuitive solution concept, for
its efficient representation and interpretability. Similar but
different hierarchies were employed in two other works,
where Lee et al. (2018) designed the hierarchy with seman-
tic meaning and from a operational perspective while Pang
et al. (2019) forewent explicit semantic meanings for higher
flexibility. Both provided promising empirical results on the
full-length games against built-in Als. Instead of full-length
SC2 games, our investigation targets the minigames and we
propose a way to integrate human expertise, the Curriculum
Learning paradigm and the Experience Replay technique
into the learning process.

Different from related works, our work adopts a principle-
driven HRL approach with human expertise in the subgoal
selection and thus an implicit formulation of a curriculum
for the agent, on SC2 minigames in order to achieve empiri-
cal sample efficiency and to enhance interpretability.

Experiments

In the experiments, we specifically focus on two minigames,
viz., BM and CMAG to investigate the effectiveness of
our method. We choose these two because, the discrepan-
cies in the performance between trained RL agents and hu-
man experts are the most significant as reported in (Vinyals
et al. 2017), suggesting these two are the most challeng-
ing for non-hierarchical end-to-end learning approaches. For
both CMAG and BM, we have implemented our customized
SC2 minigames (subtasks) as described in the proposed
methodology section, and we pair them with pre-defined
reward thresholds. In our experiments, the decompositions
for BM and CMAG are [BuildSupplyDepots, BuildBar-
racks, BuildMarinesWithBarracks, BM], and [CMAG, Buil-
dRefinery, CollectGasWithRefineries, BuildRefineryAndCol-
lectGas, CMAG], respectively.

Experimental Setup

e Model Architecture and Hyperparameters. We follow
the model architecture of Fully Convolutional agent in
(Vinyals et al. 2017) by utilizing an open-source imple-
mentation by Ring (2018). We use the hyperparameters
listed in Table 1.

e Training & Testing. In order to evaluate the empirical
sample efficiency of our method, we restrict the total num-
ber of training samples to be 10 million. Note this is
still significantly fewer than 600 million in (Vinyals et
al. 2017) or 10 billion in (Zambaldi et al. 2019). Further-
more, we adopt their practice of training multiple agents
to report the best results attained. After training, on the
trained model, average and maximum scores over 30 in-
dependent episodes are reported.

e Computing Resource. CPU: Intel(R) Core(TM) i9-
10920X CPU @ 3.50GHz, RAM:64 GB, GPU: GeForce
RTX 2080 SUPER 8GB. The training time for a single

model initialization: approximately 1.66 hours for CMAG

and 1.5 hours for BM.

Table 1: Hyperparameters

BM CMAG
Learning rate 0.0007 0.0007
Batch size 32 32
Trajectory length 40 40
Off-policy learning algorithm PPO PPO
Reward thresholds [7,7,7,2] | [300,5,5,5,500]

Table 2: Average Rewards Achieved

Minigame | SC2LE | DRL Ours Human Expert
CMAG 3,978 | 5,055 | 478.5(527) 7,566
BM 3 123 6.7(6.24) 133

Table 3: Maximum Rewards Achieved

Minigame | SC2LE DRL Ours | Human Expert
CMAG 4,130 | unreported | 1825 7,566
BM 42 unreported | 22 133

Table 4: Training Samples Required

Minigame | SC2LE | DRL | Ours | Human Expert
CMAG 6e8 lel0 | 1e7 N.A
BM 6e8 lel0 | 3.4e6 N.A
Discussion

Our experimental results demonstrate similar trends to those
shown in (Vinyals et al. 2017). The variance observed in
final performance achieved can be quite large, over differ-
ent hyperparameter sets, different or same model parameter
initializations and other stochasticity involved in learning.
For Tables 2 and 3, the higher the values the better. For Ta-
ble 4, the lower the values the better. Among the 5 agents
for BM, the best performing agent can achieve an average
reward of 6.7 during testing, while the worst performing
agent can barely achieve 0.1. Note that the average reward
of 6.7 is twice more than the average reward of the best per-
forming agent (3) reported in (Vinyals et al. 2017) for BM.
In addition, our method allows for an in-depth investiga-
tion into the agent’s learning curves to identify which part
of the learning was not effective and led to the sub-optimal
final performance. We compare the best (average 6.7) and
worst (average 0.1) agents based on their subgoal learning
curves, and we find that the best agent is learning effectively
across all subgoals. From Figure 5, the learning curves in
all subtasks show consistent progress with more samples,
where the learning curves of the worst agent show substan-
tially less progress, often flat at zero with very rare spikes,
as shown in Figure 6. Especially for the BuildBarracks sub-
task, the agent’s learning is ineffective and it only occasion-
ally stumbles upon the correct actions of building barracks

CollectMineralsAndGas_first

° —— episqdic reward
" _M
5
E 0
0 10 20 30 40
1ed
BuildRefinery
T 50 — episodic reward
c —— running average reward
225
) skl
0 10 20 30 40

CollectGasWithRefineries

k=] episdblf reward

g 500 runnfp aybrage reward

(5] N

x g At AAAAA—— A

0.0 0.5 1.0 15 2.0 25
1e5
BuildRefineryAndCollectGas
T 500 — episodic reward
g 250 —— running average reward
& 0 AN § A A A A_AA A AA
0.0 0.5 1.0 15 2.0 25

1e5

CollectMineralsAndGas_last

—— episodic reward
2000 — running average re
0

0.0 25 5.0 75 10.0 125 15.0 175
Number of samples

Reward

Figure 4: Collect Minerals And Gas learning curve.

at random and receives a corresponding reward signal. Al-
ternatively, the comparison between the running average re-
wards for these two agents clearly demonstrates that learn-
ing for the best agent on the BuildBarracks subtask is signif-
icantly more effective. The performance on this subtask also
affects the final subtask BuildMarines since without know-
ing how to build barracks, the agent cannot take the action
of producing marines even if it has learnt this subpolicy. We
believe such interpretability and explainability provided by
our method are helpful in understanding and improving the
learning process and the behavior of the agent.

On the other hand, the experimental results in CMAG
show slightly less success. We believe this can be attributed
to the difference in the setting of learning. In BM, the agent
has to learn distinct skills and how to execute them in se-
quence in order to perform well, with relatively less em-
phasis on the degree of mastery of these skills. However,
in CMAG the agent’s mastery of the skills including min-
ing minerals and gas directly and critically affects its final
score, viz., total amount of minerals and gas collected. It
means that the agent has to be able to perform the skills well,
i.e., optimize with respect to time and manufacturing cost,
which in itself can be a separate and more complex learn-
ing task. Another experimental difficulty for CMAG lies in
the reward scales because the subtasks for collecting min-
erals and gas have high reward ceilings (as high as several
thousand), while those for building the gas refineries have
comparatively low reward ceilings (less than one hundred).
Due to this large difference in the scales of the reward sig-
nals between subtasks, the learning on the subtasks is even
more difficult and can be unbalanced.

BuildSupplyDepots

30 — episodic reward
o —— running average reward
< 20
3
S0 M il |
0
0 1 2 3 4 5 6
1e5
BuildBarracks
—— episodic reward
T 20 -~ rnningaverage reward
g
10
“ A
0 A M s A
0 1 2 3 4 5 6 7

0.0 25 5.0 75 10.0 12,5 15.0 17.5

BuildMarines

0.0 0.2 0.4 0.6 0.8 1.0
Number of samples 1es

Figure 5: Build Marines learning curve (best agent).

BuildSupplyDepots

BuildBarracks

20 —— episodic reward
B 15 — wiingaverage reward
g10
SEI (1 1 1
0.0
0 5 10 15 20

BuildMarinesWithBarracks

25

1e5

0 5 10 15 20 25

BuildMarines

Reward

Number of samples 1e3

Figure 6: Build Marines learning curve (worst agent).

Conclusion & Future Work

In this work, we examined the SC2 minigames and proposed
a way to introduce human expertise to an HRL framework.
By designing customized minigames to facilitate learning
and leveraging the effectiveness of hierarchical structures in
decomposing complex and large problems, we empirically
showed that our approach is sample-efficient and enhances

interpretability. This initial work invites several exploration
directions: developing more efficient and effective ways of
introducing human expertise; a more formal and principled
state representation to further reduce the complexity of the
state space (goal space) with theoretical analysis on its com-
plexity; and a more efficient learning algorithm to pair with
the HRL architecture, Experience Replay and Curriculum
Learning.

Acknowledgments

This work was partially supported by an Academic Research
Grant T1 251RES1827 from the Ministry of Education in
Singapore and a grant from the Advanced Robotics Center
at the National University of Singapore.

References

Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.;
and Zaremba, W. 2017. Hindsight experience replay. In
Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fer-
gus, R.; Vishwanathan, S.; and Garnett, R., eds., Advances
in Neural Information Processing Systems 30. Curran Asso-
ciates, Inc. 5048-5058.

Andrychowicz, M.; Baker, B.; Chociej, M.; J6zefowicz, R.;
McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Powell,
G.; Ray, A.; Schneider, J.; Sidor, S.; Tobin, J.; Welinder, P.;
Weng, L.; and Zaremba, W. 2020. Learning dexterous in-
hand manipulation. International Journal of Robotics Re-
search 39(1):3-20.

Bakker, B., and Schmidhuber, J. 2004. Hierarchical rein-
forcement learning based on subgoal discovery and subpol-
icy specialization. In Proceedings of the 8-th Conference on
Intelligent Autonomous Systems, IAS-8, 438-445.

Barto, A. G., and Mahadevan, S. 2003. Recent advances
in hierarchical reinforcement learning. Discrete Event Dy-
namic Systems 13(1-2):41-77.

Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th An-
nual International Conference on Machine Learning, ICML
’09, 41-48. New York, NY, USA: Association for Comput-
ing Machinery.

Buch, V.; Ahmed, I.; and Maruthappu, M. 2018. Artificial
intelligence in medicine: Current trends and future possibil-
ities. British Journal of General Practice 68:143—-144.

Cath, C. 2018. Governing artificial intelligence: Ethical, le-
gal and technical opportunities and challenges. Philosophi-
cal Transactions of The Royal Society A Mathematical Phys-
ical and Engineering Sciences 376:20180080.

Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.; and
Boutilier, C. 1998. Hierarchical solution of markov decision
processes using macro-actions. In Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence,
UAT'98, 220-229. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc.

Hengst, B. 2010. Hierarchical reinforcement learning. In
Sammut, C., and Webb, G. L., eds., Encyclopedia of Machine
Learning. Boston, MA: Springer US. 495-502.

Justesen, N.; Torrado, R. R.; Bontrager, P.; Khalifa, A.; To-
gelius, J.; and Risi, S. 2018. Iluminating generalization in
deep reinforcement learning through procedural level gener-
ation. In NeurlPs Workshop on Deep Reinforcement Learn-
ing.

Lee, D.; Tang, H.; Zhang, J. O.; Xu, H.; Darrell, T.; and
Abbeel, P. 2018. Modular architecture for starcraft II with
deep reinforcement learning. In Rowe, J. P., and Smith, G.,
eds., Proceedings of the Fourteenth AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment,
AIIDE 2018, November 13-17, 2018, Edmonton, Canada,
187-193. AAAI Press.

Levy, A.; Konidaris, G. D.; Jr.,, R. P;; and Saenko, K. 2019.
Learning multi-level hierarchies with hindsight. In 7th In-
ternational Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019.

Li, Z.; Narayan, A.; and Leong, T. Y. 2017. An efficient ap-
proach to model-based hierarchical reinforcement learning.
31st AAAI Conference on Artificial Intelligence, AAAI 2017
3583-3589.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning. In 4th Interna-
tional Conference on Learning Representations, ICLR 2016
- Conference Track Proceedings.

Lin, L.-J. 1993. Reinforcement learning for robots using
neural networks. Ph.D. Dissertation, Carnegie Mellon Uni-
versity.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. In NIPS Deep
Learning Workshop.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529-533.
Pang, Z.-J.; Liu, R.-Z.; Meng, Z.-Y.; Zhang, Y.; Yu, Y.; and
Lu, T. 2019. On Reinforcement Learning for Full-Length
Game of StarCraft. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, 4691-4698.

Ring, R. 2018. Reaver: Modular deep reinforcement learn-
ing framework. https://github.com/inoryy/reaver.

Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal value function approximators. In Proceedings of the
32nd International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, 1312-1320.
JMLR.org.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
CoRR abs/1707.06347.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, L.;

Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T. P.;

Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529:484-489.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driess-
che, G.; Graepel, T.; and Hassabis, D. 2017. Master-
ing the game of go without human knowledge. Nature
550(7676):354-359.

Singh, A.; Yang, L.; Finn, C.; and Levine, S. 2019. End-to-
end robotic reinforcement learning without reward engineer-
ing. In Bicchi, A.; Kress-Gazit, H.; and Hutchinson, S., eds.,
Robotics: Science and Systems XV, University of Freiburg,
Freiburg im Breisgau, Germany, June 22-26, 2019.

Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. A Bradford Book55 Hayward Street
Cambridge MA United States, second edition.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Be-
tween mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelligence
112(1-2):181-211.

Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhn-
evets, A. S.; Yeo, M.; Makhzani, A.; Kiittler, H.; Agapiou,
J. P; Schrittwieser, J.; Quan, J.; Gaffney, S.; Petersen, S.;
Simonyan, K.; Schaul, T.; van Hasselt, H.; Silver, D.; Lilli-
crap, T. P.; Calderone, K.; Keet, P.; Brunasso, A.; Lawrence,
D.; Ekermo, A.; Repp, J.; and Tsing, R. 2017. Star-
craft II: A new challenge for reinforcement learning. CoRR
abs/1708.04782.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J. P.; Jaderberg, M.;
Vezhnevets, A. S.; Leblond, R.; Pohlen, T.; Dalibard, V.;
Budden, D.; Sulsky, Y.; Molloy, J.; Paine, T. L.; Gulcehre,
C.; Wang, Z.; Pfaff, T.; Wu, Y.; Ring, R.; Yogatama, D.;
Wiinsch, D.; McKinney, K.; Smith, O.; Schaul, T.; Lillicrap,
T.; Kavukcuoglu, K.; Hassabis, D.; Apps, C.; and Silver, D.
2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575(7782):350-354.

Weng, L. 2020. Curriculum for reinforcement learning.
lilianweng. github.io/lil-log.

Zambaldi, V. F; Raposo, D.; Santoro, A.; Bapst, V.; Li, Y.;
Babuschkin, I.; Tuyls, K.; Reichert, D. P.; Lillicrap, T. P,;
Lockhart, E.; Shanahan, M.; Langston, V.; Pascanu, R.;
Botvinick, M.; Vinyals, O.; and Battaglia, P. W. 2019. Deep
reinforcement learning with relational inductive biases. In
7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Zaremba, W., and Sutskever, I. 2014. Learning to execute.
CoRR abs/1410.4615.

