
A Framework for Reinforcement Learning and Planning: Extended Abstract∗

Thomas M. Moerland,1,2 Joost Broekens,2 Catholijn M. Jonker1,2

1 Interactive Intelligence, Delft University of Technology, The Netherlands
2 Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

Abstract
Two successful approaches to Markov Decision Process op-
timization are planning and reinforcement learning. Both re-
search communities operate large separate. This framework
attempts to bridge both fields, by disentangling their com-
mon algorithmic space, showing that both fields face exactly
the same algorithmic decisions. The full paper is available
from https://arxiv.org/pdf/2006.15009.pdf.

Sequential decision making, commonly formalized as
Markov Decision Process (MDP) optimization, is a key chal-
lenge in artificial intelligence research. The two prime re-
search directions in this field are reinforcement learning
(Sutton and Barto 2018), a subfield of machine learning,
and planning (also known as search), of which the discrete
and continuous variants have been studied in the fields of
artificial intelligence (Russell and Norvig 2016) and con-
trol (Bertsekas 1995), respectively. Planning and learning
approaches differ with respect to a key assumption: is the
dynamics model of the environment known (planning) or
unknown (reinforcement learning).

Departing from this distinctive assumption, both research
fields have largely developed their own methodology, in
relatively separated communities. There has been cross-
breeding as well, better known as ‘model-based reinforce-
ment learning’ (recently surveyed by Moerland, Broekens,
and Jonker (2020)). While the combination of planning and
learning has shown great empirical success (Silver et al.
2017), literature still lacks a fundamental view on the rela-
tion between both fields, and how their approaches overlap
and differ.

Therefore, this paper* introduces the Framework for Re-
inforcement learning and Planning (FRAP), which identifies
the essential algorithmic decisions that any planning or RL
algorithm has to make. It consists of six main dimensions,
which we will shortly discuss in more detail. However, the
main message of the framework is that any RL or planning
algorithm, from Q-learning (Watkins and Dayan 1992) to A?

(Hart, Nilsson, and Raphael 1968), will have to make a de-
cision on each of these dimensions. Therefore, planning and
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learning are not only related, but really two sides of the same
coin. We illustrate this point in the full paper*, by formally
comparing a variety of planning and RL papers along the
dimensions of our framework.

Framework
We will here shortly introduce the structure of FRAP. It con-
sists of six main dimensions, of which some have multiple
sub-considerations, which are summarized in Table 1. FRAP
centers around the concept of trials and back-ups. A trial is
a single call to the environment, where we impute a state-
action pair and get back a next state (distribution) and asso-
ciated reward (distribution). Trials are the fundamental way
in which we get information about the environment. After
one or more trials, we want to back-up the acquired informa-
tion to better decide where we want to make the next trial.
We may disentangle this process into six key questions:

1. Where to put our computational effort?
We first determine for which states we seek a solution at
all. As a crucial distinction, we may either consider all
states (as used by Dynamic Programming approaches),
or only the reachable states (which we can track by only
sampling from a start state distribution).

2. Where to make the next trial?
We then determine where to make the next trial. There
are several relevant considerations, like which set of state-
action pairs are candidate for selection in the current it-
eration (e.g., all actions at the current state, or all state-
actions at the frontier), and how to add exploration (since
greedy selection leads to suboptimal behaviour).

3. How to estimate the cumulative return?
After we make the trial, we need an estimate of the re-
maining cumulative reward after the trial. We can either
sample and/or bootstrap, which we both need to decide
on.

4. How to back-up?
We then want to back-up this new information (obtained
from the trial). We need to decide on the back-up policy,
and on how to deal with the expectations over the actions
and dynamics in the one-step Bellman equation. As an ex-
ample, both a well-known planning algorithm like MCTS



Table 1: Overview of dimensions in the Framework for Reinforcement learning and Planning (FRAP). For any planning or reinforcement
learning algorithm, we should be able to identify the decision on each of the dimensions. The subconsiderations and possible options are
shown in the right columns. IM = Intrinsic Motivation.

Dimension Consideration Choices

1. Comp. effort - State set All↔ reachable↔ relevant

2. Trial selection - Candidate set Step-wise↔ frontier

- Exploration Random↔ Value-based↔ State-based
-For value: mean value, uncertainty, priors
-For state: ordered, priors (shaping), novelty, knowledge IM, competence IM

- Phases One-phase↔ two-phase

- Reverse trials Yes↔ No

3. Return estim. - Sample depth 1↔ n↔∞

- Bootstrap func. Learned↔ heuristic↔ none

4. Back-up - Back-up policy On-policy↔ off-policy

- Policy expec. Expected↔ sample

- Dynamics expec. Expected↔ sample

5. Representation - Function type Value↔ policy↔ both (actor-critic)
- For all: generalized↔ not generalized

- Function class Tabular↔ function approximation
- For tabular: local↔ global

6. Update - Loss - For value: e.g., squared
-For policy: e.g., (det.) policy gradient↔ value gradient↔ cross-entropy, etc.

- Update Gradient-based↔ gradient-free
- For gradient-based, special cases: replace & average update

(Kocsis and Szepesvári 2006) and a well-known RL algo-
rithm like SARSA (Rummery and Niranjan 1994) make
the same algorithmic choice here (an on-policy, sample
action, sample dynamics back-up).

5. How to represent the solution? We also want to be able to
store the new information. Here, planning and reinforce-
ment learning have emphasized different approaches,
since planning methods mostly focus on tabular/atomic
representations (like nodes), while reinforcement learn-
ing approaches have emphasized approximate (learned)
representations of the solution.

6. How to update the solution? Finally, we need to update
our solution (from 5) based on the back-up estimate (from
4). We can distinguish gradient-based and gradient-free
updates. FRAP also shows how common planning up-
dates can be cast into this categorization.

The framework shows that planning and learning essentially
do the same thing. As an illustration, note that a MCTS

of 500 traces is conceptually not too different from 500
episodes of a model-free Q-learning agent in the same envi-
ronment. In both cases, we repeatedly move forward in the
environment to acquire new information, make back-ups to
store this information, with the goal to make better informed
decisions in the next trace/episode. The model-free RL agent
is restricted in the order in which it can visit states, but oth-
erwise, the methodology of exploration, back-ups, represen-
tation and updates is the same.

The main paper includes a large table comparing a vari-
ety of planning, model-free RL and model-based RL papers
along the dimensions of our framework, which illustrates the
validity of FRAP. In short, FRAP provides a common lan-
guage to categorize algorithms in both fields, hopefully serv-
ing as a bridge between both. We hope it also inspires new
research, for example by identifying novel possible combi-
nations of planning and learning, or stimulating the design
of a new algorithm in one field based on inspiration from the
other.
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