
LATEX TikZposter

PBCS: Efficient Exploration and Exploitation Using a Synergy
between Reinforcement Learning and Motion Planning

Guillaume Matheron, Nicolas Perrin, Olivier Sigaud – guillaume pub [at] matheron.eu

Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR, F-75005 Paris, France

PBCS: Efficient Exploration and Exploitation Using a Synergy
between Reinforcement Learning and Motion Planning

Guillaume Matheron, Nicolas Perrin, Olivier Sigaud – guillaume pub [at] matheron.eu

Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR, F-75005 Paris, France

Motion Planning

Pros:
• Is able to explore efficiently without a reward signal.
• Most approaches require a model of the robot.

Cons:
• Learns trajectories, and trajectory following requires a model of the robot.

MP algorithm of choice →RRT [Lavalle, 1998].

We use a variant of RRT which
does not require a model (the ac-
tion is chosen randomly instead of
using a heuristic).

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0

31

In this maze a sparse-reward tar-
get at coordinates (.5, 1.5) is easily
found. The color range is the depth
in the exploration tree.

Algorithm 1: Variant of RRT
In : s0 ∈ S the initial state

d : S × S → R+ distance over states
step : S × A→ S × R× B
random state, returns a random
state from S
random action.

Out: transitions ⊆ S × A× R× B× S
1 transitions = ∅
2 visited = {s0}
3 while |transitions| < iterations do
4 starget = random state()
5 snear = argmins∈visited d(s, starget)
6 a = random action()
7 s′, reward = step(snear, a)
8 transitions =

transitions ∪ (s, action, reward, s′)
9 visited = visited ∪ s’

10 end

Reinforcement Learning

Pros:
• Does not require a model of the robot.
• Learns a robust controller.

Cons:
• Explores with inefficient random noise when no reward gradient is available.

RL algorithm of choice →DDPG [Lillicrap et al., 2015].

Experience is collected in a replay
buffer and the equations to the right
are used to update the networks.

Problem: before finding the reward
DDPG is only driven by random
noise and explores poorly.

DDPG maintains two function approxima-
tors:
• an actor π parametrized by Ψ
• a critic Q parametrized by θ that estimates

the state-action value function Qπ.

Q(si) is made to tend towards ri +
γQ(si+1, π(si+1).
∀i, yi = ri + γQθ′ (si+1, πψ′ (si+1))

Lθ =
∑
i

[
Qθ (si, ai)− yi

]2

. . (1)

π(si) is changed in order to minimize
Q(si, π(si)).

Lψ = −
∑
i

Qθ (si, πψ (si)) . (2)

Hopefully, this means that π(si) tends to-
wards argmaxaQ(si, a).

Plan

Motion Planning is used to find a single valid trajectory
from the environment start to a rewarded state.
We designed a new algorithm called Ex inspired from
EST [Hsu et al., 1997].

Algorithm 2: Ex algorithm
In : s0 ∈ S the initial state

step : S × A→ S × R× B the step function
iterations ∈ N
Bin : S → N a function that partitions the
state-space in bins

Out: T : an exploration tree
1 Initialize the exploration set T to a single node s0

2 cs0 ← 0
3 while |search tree| < iterations do

4 b = argmin
b∈{Bin(s),s∈T}

∑
s∈T,Bin(s)=b

cs

5 s = argmin
s∈T,Bin(s)=b

cs

6 Increment cs
7 a =random action()
8 s′, reward = step(s, a)
9 T ← T ∪ {s′}
10 If cs′ is undefined, then cs′ ← 0

11 end

Backplay

The trajectory obtained in the ”Plan” phase is used as a
curriculum for training DDPG.
At first, the starting point of the environment is close to
the goal, then moved backwards along the curriculum tra-
jectory. This technique is similar to Go-Explore [Ecoffet
et al., 2019] and Backplay [Resnick et al., 2018].

Using Ex, find a single suc-
cessful trakectory τ0 . . . τT

K = T − 1

Train using environ-
ment reset point τK

Test

K = K − 1

100%< 100%

Problem: the gradient descent of Eq. (2) may have local
minima even when the reward is close and found through
random actions! [Matheron et al., 2019]

To counter this, when training becomes stuck the last
good policy and K are saved and used as stepping stones

for skill chaining.

Chain Skills

The backplay process is wrapped in a skill chaining frame-
work: when backplay fails, it outputs an intermediate
point τT and a policy πn that can drive the agent from
τT to τN . Then a new controller is trained to solve the
rest recursively.

Algorithm 3: Phase 2 of PBCS

In : τ0 . . . τN the output of the ”Plan” phase
Out: π0 . . . πn a chain of policies with activation

sets A0 . . . An

1 T = N
2 n = 0
3 while T > 0 do
4 πn, T = Backplay(τ0 . . . τT)
5 An = ball of radius ε centered around τT
6 n = n + 1

7 end
8 Reverse lists π0 . . . πn and A0 . . . An

The algorithm outputs a list of policies and activation
regions that form a multi-policy controller.
To use this controller, we start using π0 and when the
agent reaches a state in Ai, the policy switches to πi.

Results Bibliography

A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-Explore: a New Approach for Hard-Exploration Problems.
arXiv:1901.10995, Jan. 2019. URL http://arxiv.org/abs/1901.10995.

D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. volume 3, pages 2719–2726. IEEE, 1997.
ISBN 978-0-7803-3612-4. doi: 10.1109/ROBOT.1997.619371. URL http://ieeexplore.ieee.org/document/619371/.

S. M. Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical report, Iowa State University, 1998.
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep

reinforcement learning. arXiv:1509.02971, Sept. 2015. URL http://arxiv.org/abs/1509.02971.
G. Matheron, N. Perrin, and O. Sigaud. The problem with DDPG: understanding failures in deterministic environments with sparse

rewards. arXiv:1911.11679, Nov. 2019. URL http://arxiv.org/abs/1911.11679.
C. Resnick, R. Raileanu, S. Kapoor, A. Peysakhovich, K. Cho, and J. Bruna. Backplay: ”Man muss immer umkehren”.

arXiv:1807.06919, Dec. 2018. URL http://arxiv.org/abs/1807.06919.

