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Motion Planning

Pros:
• Is able to explore efficiently without a reward signal.
• Most approaches require a model of the robot.

Cons:
• Learns trajectories, and trajectory following requires a model of the robot.

MP algorithm of choice →RRT [Lavalle, 1998].

We use a variant of RRT which
does not require a model (the ac-
tion is chosen randomly instead of
using a heuristic).
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In this maze a sparse-reward tar-
get at coordinates (.5, 1.5) is easily
found. The color range is the depth
in the exploration tree.

Algorithm 1: Variant of RRT
In : s0 ∈ S the initial state

d : S × S → R+ distance over states
step : S × A→ S × R× B
random state, returns a random
state from S
random action.

Out: transitions ⊆ S × A× R× B× S
1 transitions = ∅
2 visited = {s0}
3 while |transitions| < iterations do
4 starget = random state()
5 snear = argmins∈visited d(s, starget)
6 a = random action()
7 s′, reward = step(snear, a)
8 transitions =

transitions ∪ (s, action, reward, s′)
9 visited = visited ∪ s’

10 end

Reinforcement Learning

Pros:
• Does not require a model of the robot.
• Learns a robust controller.

Cons:
• Explores with inefficient random noise when no reward gradient is available.

RL algorithm of choice →DDPG [Lillicrap et al., 2015].

Experience is collected in a replay
buffer and the equations to the right
are used to update the networks.

Problem: before finding the reward
DDPG is only driven by random
noise and explores poorly.

DDPG maintains two function approxima-
tors:
• an actor π parametrized by Ψ
• a critic Q parametrized by θ that estimates

the state-action value function Qπ.

Q(si) is made to tend towards ri +
γQ(si+1, π(si+1).
∀i, yi = ri + γQθ′ (si+1, πψ′ (si+1))

Lθ =
∑
i

[
Qθ (si, ai)− yi

]2

. . (1)

π(si) is changed in order to minimize
Q(si, π(si)).

Lψ = −
∑
i

Qθ (si, πψ (si)) . (2)

Hopefully, this means that π(si) tends to-
wards argmaxaQ(si, a).

Plan

Motion Planning is used to find a single valid trajectory
from the environment start to a rewarded state.
We designed a new algorithm called Ex inspired from
EST [Hsu et al., 1997].

Algorithm 2: Ex algorithm
In : s0 ∈ S the initial state

step : S × A→ S × R× B the step function
iterations ∈ N
Bin : S → N a function that partitions the
state-space in bins

Out: T : an exploration tree
1 Initialize the exploration set T to a single node s0

2 cs0 ← 0
3 while |search tree| < iterations do

4 b = argmin
b∈{Bin(s),s∈T}

∑
s∈T,Bin(s)=b

cs

5 s = argmin
s∈T,Bin(s)=b

cs

6 Increment cs
7 a =random action()
8 s′, reward = step(s, a)
9 T ← T ∪ {s′}
10 If cs′ is undefined, then cs′ ← 0

11 end

Backplay

The trajectory obtained in the ”Plan” phase is used as a
curriculum for training DDPG.
At first, the starting point of the environment is close to
the goal, then moved backwards along the curriculum tra-
jectory. This technique is similar to Go-Explore [Ecoffet
et al., 2019] and Backplay [Resnick et al., 2018].

Using Ex, find a single suc-
cessful trakectory τ0 . . . τT

K = T − 1

Train using environ-
ment reset point τK

Test

K = K − 1

100%< 100%

Problem: the gradient descent of Eq. (2) may have local
minima even when the reward is close and found through
random actions! [Matheron et al., 2019]

To counter this, when training becomes stuck the last
good policy and K are saved and used as stepping stones

for skill chaining.

Chain Skills

The backplay process is wrapped in a skill chaining frame-
work: when backplay fails, it outputs an intermediate
point τT and a policy πn that can drive the agent from
τT to τN . Then a new controller is trained to solve the
rest recursively.

Algorithm 3: Phase 2 of PBCS

In : τ0 . . . τN the output of the ”Plan” phase
Out: π0 . . . πn a chain of policies with activation

sets A0 . . . An

1 T = N
2 n = 0
3 while T > 0 do
4 πn, T = Backplay(τ0 . . . τT )
5 An = ball of radius ε centered around τT
6 n = n + 1

7 end
8 Reverse lists π0 . . . πn and A0 . . . An

The algorithm outputs a list of policies and activation
regions that form a multi-policy controller.
To use this controller, we start using π0 and when the
agent reaches a state in Ai, the policy switches to πi.
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