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Despite recent successes of reinforcement learning in solving complex tasks
like video game-playing and robotics control, existing model-free
approaches suffer from the issue of high sample complexity (i.e. requires
tens of millions of transitions to solve a problem). Model-based
reinforcement learning approaches aim to tackle the problem by learning a
model of the environment, a model of the world. The model is often used
to generate data for the agent to learn from so less real-world data is
needed. Specifically, rollouts of transitions are generated from the model
given some states.

In this work, we look at two aspects of the rollout mechanisms, namely
planning shape (extent) and directionality, and investigate their impact on
performance. Based on the intuition of epistemic uncertainty, we propose a
method to automate the decision of when to roll out forward and
backward, given a fixed planning budget. We hypothesize that forward
rollouts serve the purpose of exploration while backward rollouts serve the
purpose of value propagation. By experimenting on two classical
reinforcement learning benchmarks, we show how performing bidirectional
rollouts for the same amount of planning steps can improve performance in
both the tabular and function approximation setting.

Abstract

We tested our hypotheses and proposed method on two classical
reinforcement learning benchmarks, namely GridWorld (tabular) and
Cartpole (linear function approximation). In the first environment, the agent
aims to navigate to the goal state which the top right-hand corner. We vary
the sizes of the world to increase the difficulty (reward sparsity. In the
second environment, the agent aims to maintain the pole upright by moving
the cart. Details of the experimental setup can be found in our paper.
From our experiments in the GridWorld environment, we can first observe
clearly how model-based approaches (blue, green and red bars) outperform
the model-free baseline (yellow bar). The benefits of having a mid-size
planning shape are also observed, in agreement with Holland et. al. (2018).
Most importantly, we see how allocating planning resources carefully using
our proposed approach (red bar) on bidirectional rollouts can improve
performance as the problem difficulty increases.

Introduction

To perform a systematic and large-scale study on the rollout mechanism, we
base all our methods on Q-learning for model-free baselines and DYNA-Q
for model-based variants (Sutton and Barto, 2018). Here we make two
hypotheses on planning shape and directionality. Firstly, planning shape has
its optimal range in mid-sized rollouts as observed by Holland et. al. (2018).
Second, we hypothesize forward, and backward rollouts serve different
purposes when learning a value function. Particularly, forward rollouts
should be used more when the agent is uncertain about the value
estimation of the current state. As the agent improves that state’s
estimation with forward rollouts, more backward rollouts should be
performed to assign credits to previous states. We assume a fixed planning
budget for all the cases. To examine the effect of planning shape, we vary
the rollout size for each algorithm variant used. For instance, for a budget of
20 planning steps, one can sample 5 states and roll out 4 steps or sample 10
states and roll out 2 steps, and so on.

For the second hypothesis, we use the learning error as the pseudomeasure
of epistemic uncertainty. In the tabular setting, we keep track of the error of
each state-action pair. The error is used as a normalizing factor in allocating
planning resources. The higher the error, the more forward rollouts are
performed, vice versa. To extend to the function approximation setting with
trained dynamics models, we encounter 3 challenges and propose 3
remedies so our method can work on problems with large state space. To
counter the memory issue of a huge error table in continuous state space,
we propose using state discretization to bin similar states together, so an
agent doesn’t need to keep track of a huge number of state-action pairs.
Additionally, as learning error and epistemic uncertainty no longer
correlates linearly in the function approximating setting, we propose using
an exponential moving error as the measure, so the normalizing factor is
less influenced by extreme values and more adaptive to recent data. Last
but not least, when the dynamics models are learned, it is often imperfect,
leading to the compounding of errors as the length of rollouts increases.
This problem can lead to catastrophic failure in an agent if the generated
data is highly erroneous. We propose using an ensemble of dynamics
models to counter the issue. We use the standard deviation of predictions
across these models as an indicator of how certain the models are with the
predictions. If the data highly uncertain, the agent would drop those
harmful transitions. Details of our method can be found in our paper.

Proposed Method

In this work, we empirically studied the effect of planning shape and
directionality on performances of model-based reinforcement learning
methods. Based on the intuition of epistemic uncertainty, we further
propose a method to automate the decision of when to roll out forward and
backward in order to achieve better performance and sample complexity. We
provide support for our hypotheses and proposed method by experimenting
on two reinforcement learning benchmarks under the tabular and linear
function approximation setting. Our method shows how selective
rollouts/planning can improve performance given a fixed planning budget.

For future work, we would like to test our method on more complex
environments under the non-linear function approximation setting. What’s
more, we would like to further shed some of our assumptions in this study to
demonstrate generalizability of our approach. For instance, it would be
interesting to look at how our approach fairs if we train the dynamics model
at the same time as the value function.

Conclusions and Future Work

Results

Figure 1. GridWorld Environment Figure 2. Cartpole Environment
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Figure 3. Performance charts in GridWorld.

Given the potential of model-based reinforcement learning in improving the
learning and data efficiency of an artificial agent, there are still many
unexplored areas and unresolved issues in the field. The mechanism of
rolling out is one of them. Assuming we have a good enough model, how
we use it to generate rollouts or ‘imagined’ data may matter a lot. Consider
humans learning with internal models, a rather loosely connected
analogical example, we don’t simply imagine one step into the future.
Sometimes, we imagine many steps into the future. Other times, we
imagine backward into the past to hypothesize what might be some other
ways that would have led us to this point. Hence, wouldn’t it matter for an
artificial agent too if it can vary in its rollout mechanism in terms of the
extent and directionality?

As shown by Holland et. al. (2018), the extent of rollout matters a lot. The
planning shape, which refers to the extent of a rollout, has a significant
impact on the effectiveness of model-based learning. An interesting
conclusion of the work is the trivial benefits of one-step rollouts and the
significantly greater benefits of medium-length rollouts. In addition to the
extent, Goyal et. al. (2018) and Ashley et. al. (2018) demonstrated the
benefits of rolling out backward with a backward dynamics model. By rolling
out backward, values can be propagated faster for high reward states, which
is especially beneficial for sparse reward environments. With the effects of
the extent and directionality of rollouts demonstrated separately, we are
motivated to systematically study and understand the separate and
combined effects in controlling both the extent and directionality of
rollouts. We hypothesize such understanding would allow developments of
more dynamic rollout mechanisms, which may greatly amplify the benefits
and effectiveness of model-based reinforcement learning.

Equations. For forward and backward rollout allocation,
and exponentially moving update of the error table.

To assess the scalability of the approach when extended to the function
approximation setting, we tested our methods on Cartpole using linear
function approximation with imperfect pretrained models. As you can see
from the curves, as the rollout size increases, our method (Dyna_Q_FB_DE,
brown curve) is robust against imperfect models and has the best
performance across rollout sizes, supporting our hypotheses.

Figure 4. Performance graphs in Cartpole


