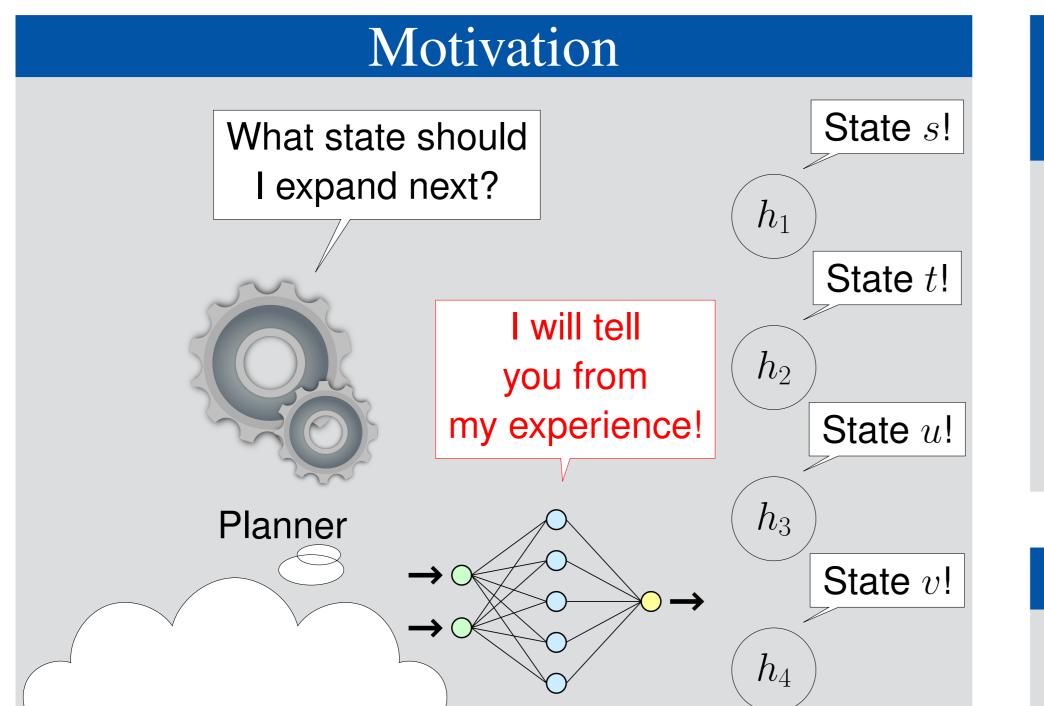
Learning Heuristic Selection with Dynamic Algorithm Configuration

David Speck¹, André Biedenkapp¹, Frank Hutter^{1,2}, Robert Mattmüller¹ and Marius Lindauer³ (speckd, biedenka, fh, mattmuel)@informatik.uni-freiburg.de, lindauer@tnt.uni-hannover.de

¹University of Freiburg, ²Bosch Center for Artificial Intelligence, ³Leibniz University Hannover



Dynamic Algorithm Configuration – Theoretical Properties

- An optimal DAC policy is at least as good as an optimal AS policy and an optimal AAC policy.
- There is a family of planning tasks so that a DAC policy expands exponentially fewer states until a plan is found.

Features and Rewards

Features for each heuristic h ∈ H (open list)
max_h, min_h, μ_h, σ²_h, #_h and t ∈ N₀

Who is correct?

RL Agent

Satisficing planning

- Search for a good plan
- Inadmissible heuristics are difficult to combine
- Greedy search with multiple heuristics
 - States evaluated with each heuristic
 - One separate open list for each heuristic

Automated Algorithm Configuration

- ► Algorithm Selection $\tilde{\pi} : \mathcal{I} \to H$
 - Considers instance
 - E.g. portfolio planner
- ► Adaptive Algorithm Configuration $\tilde{\pi} : \mathbb{N}_0 \to H$
 - Considers time step
 - E.g. alternation between heuristics

- **>** Difference of each feature between t 1 and t
- Reward: -1 for each expansion step until solution is found

Experiments

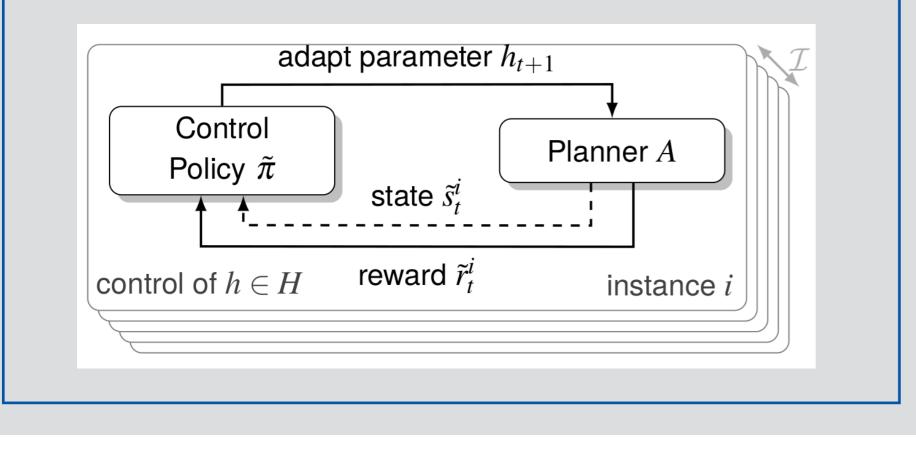
- $\blacktriangleright H = \{h_{\rm ff}, h_{\rm cg}, h_{\rm cea}, h_{\rm add}\}$
- ► 6 domains with 100 instances per train/test Set
- ► *e*-greedy deep Q-learning (double DQN)
 - \blacktriangleright 2-layer network with 75 hidden units
 - ► 5 different DAC polices per domain

Algorithm	CONTROL POLICY			SINGLE HEURISTIC				BEST AS
Domain (# Inst.)	RL	RND	ALT	$h_{f\!f}$	h_{cg}	h_{cea}	h_{add}	$\overline{SGL.h}$
barman (100)	84.4	83.8	83.3	66.0	17.0	18.0	18.0	67.0
BLOCKS (100)	92.9	83.6	83.7	75.0	60.0	92.0	92.0	93.0
CHILDS (100)	88.0	86.2	86.7	75.0	86.0	86.0	86.0	86.0
rovers (100)	95.2	96.0	96.0	84.0	72.0	68.0	68.0	91.0
sokoban (100)	87.7	87.1	87.0	88.0	90.0	60.0	89.0	92.0
visitall (100)	56.9	51.0	51.5	37.0	60.0	60.0	60.0	60.0
SUM (600)	505.1	487.7	488.2	425.0	385.0	384.0	413.0	489.0

Our approach based on RL performs overall best

▶ Dyn. Algorithm Configuration $\tilde{\pi} : \mathcal{I} \times \mathbb{N}_0 \times \tilde{\mathcal{S}} \to H$

- Considers instance, time step and planner state
- Problem can be considered as MDP
- Our approach based on Reinforcement Learning



Best Algorithm Selection (Oracle) is worse than control policies

Conclusion and Future Work

DAC can improve heuristic selection.

- Considers instance, time step and planner state
- Can improve search performance exponentially
- ► It is possible to learn good policies
- Future: Investigate domain-specific state features