- 1. <u>Multi-step</u>: multi-step lookahead
- 2. <u>Approximate</u>: function approximation for policy/value
- 3. <u>Real-time</u>: On trace from some start state

Recently very succesful class of algorithms, e.g., AlphaGo Zero

Question: How should we trade-off planning and learning/acting? *In other words:* how long should we plan before every real step?

	+	
High planning budget per timestep (think slow)	More accurate training targets	Less tra re
<i>Low planning budget per timestep</i> (think fast)	More training targets & real steps	Less ac

Think too fast nor too slow: The computational trade-off between planning and reinforcement learning

Email: T.M.Moerland@tudelft.nl

Thomas Moerland, Anna Deichler, Simone Baldi, Joost Broekens and Catholijn Jonker Delft University of Technology, The Netherlands

C. *Key plot*: Planning budget versus final 15% training performance (prev. graph).

Discussion

We face a new spectrum between full planning and full learning: - No planning at every timestep = model-free RL - Full planning at every timestep = exhaustive search

Future work

How should the planning budget per timestep depend on the *context*, in the form of: