
Synthesis of Search Heuristics for Temporal Planning via
Reinforcement Learning

Andrea Micheli and Alessandro Valentini
Embedded Systems Unit, Fondazione Bruno Kessler, Italy

MOTIVATION

Once deployed, a temporal planner will solve several different problems on the same domain
Example

I Organize the logistics of the same factory once a day
I Operate the same drone in the same area for different missions from different initial states

Key Intuition

Instead of resorting to pure reasoning each time, can we learn characteristics of the domain
and exploit them for efficiency?
Analogous to a worker that gets accustomed to a certain workplace and gains dexterity

PIPELINE

System Specification

Example Initial Con-
figurations and

Goals of interest

Learner

hnn
Heuristic

Initial Configuration and Goal

Planner Plan

Offline Online

We learn a specialized heuristic keeping a fully-functional planner online

MDP FOR A BOUNDED PLANNING PROBLEM SET

Bounded Planning Problem Set

A bounded planning problem set with at most k objects for a planning domain D (written PkD)
is a finite set of planning problems Pi for D each having less than k objects.

Given a planning domain and a bounded planning problem set we define an MDP
MPkD

=̇ 〈S,A, T,R,`〉 is s.t.
S =̇ {`} ∪ all planner states for all instances
A =̇ {ξ} ∪ all actions (events) for all instances;

T (s, a) =̇

{〈IPi,
1
|PkD|
〉 | Pi ∈ PkD} if s =`, a = ξ

{〈a[s], 1〉} if s 6=`

R(s, a, s′) =̇

1 if s′ is a goal state
−1 if s′ is a dead-end
0 otherwise.

`

〈IP2
, P2〉〈IP1

, P1〉 〈IP3
, P3〉

S〈D,P1〉 S〈D,P3〉

· · ·

〈sg, P2〉

0 ξ

0 α1

1 αg

FROM THE OPTIMAL VALUE FUNCTION (V ∗) TO THE OPTIMAL HEURISTIC (h∗)

For a bounded planning problem set PkD the following equation holds.

h∗PkD
(s) =

logγ(V ∗MPkD
(s)) if V ∗MPkD

(s) > 0

∞ otherwise

Intuition

I G

G

V ∗ = γ3 V ∗ = γ2 V ∗ = γ V ∗ = 1

V ∗ = γ2 V ∗ = γ V ∗ = 1V ∗ = −1

NEURAL ARCHITECTURE: PREDICTING V ∗

Fluents

Actions

Constants

Goals

Times

5x100 neurons (ReLU)

100
neurons
(ReLU)

1 neuron
(SoftSign)

STATE VECTORIZATION

Given a planning state s we derive a vector ~s in Rx

Fluents:
For each ground fluent:

1.0 for True,
0.0 for False,

linear scaling in [1, 0] for numeric

Actions:
For each ground action:

0.0 if action is not running
|λ| otherwise

Constants:
For each ground constant:

1.0 for True,
0.0 for False,

linear scaling in [1, 0] for numeric

Goals:
For each ground fluent:

1.0 if required True in the goal,
0.0 for if required False,

linear scaling of x in [1, 0] if re-
quired numeric x in the goal,
-1.0 if irrelevant for the goal

TN:
For each possible event:

the rational time of the last occur-
rence of the event in the STN

minimal model since last safe state

RL-BASED HEURISTIC LEARNER

Basically, Deep-Q-Learning onMPkD
with some adjustments:
I State value function, single output

network instead of DQN
I Heurstic-proportional random

action selection
I Bias in problem selection
I Memory replay with positive bias
I Fixed max depth of episodes

1: procedure RL2PLANHEURISTIC(tis, Nepisodes)
2: Vnn ←INITNN()
3: mem←LIST()
4: i2s← {i→ 0 | i ∈ tis}
5: for i ∈ 1, . . . , Nepisodes do
6: 〈s, goals〉 = inst←PICKKEYINVPROPORTIONALLYTOVALUE(i2s)
7: 〈done, solved〉 ← 〈False, False〉
8: π ← 〈s〉
9: while not done do
10: ε← εmax × e

(
ln(εmin/εmax)

Nepisodes
×i)

11: if RANDOM() < ε then
12: α←SELECTACTIONUSINGHEURISTIC(s)
13: else
14: α←SELECTACTIONUSINGPOLICY(Vnn, s)
15: 〈s′, done, ρ〉 ←DOSTEP(π, s, α, inst)
16: APPEND(mem, 〈s, ρ〉)
17: if ρ[α] = 1 then
18: solved← True
19: APPEND(π, 〈s′〉)
20: s← s′

21: Vnn ←REPLAY(Vnn, mem)
22: if solved then
23: i2s[inst]← i2s[inst] + 1

24: return Vnn

Learned heuristic

The learned heuristic hnn is an approximation of h∗

hnn(s) =̇

min(logγ(Vnn(~s)),∆h) if Vnn(~s) > 0

∆h if Vnn(~s) = 0

2∆h −min(logγ(−Vnn(~s)),∆h) otherwise

Where ∆h is bigger than the pre-fixed cutoff length of episodes set in learning

Soundness: hnn never returns ∞ because learning can be imperfect and we do not want
unsound pruning.

EXPERIMENTAL EVALUATION

Case studies

I MaJSP: A fleet of AGVs with logistics tasks in a warehouse.
. The problems differ for the number of items to be moved and the intermediate steps.

I Kitting: A single robot serving a continuous production line with kits of components
taken from shelves.
. The problems require different sequences of kits to be delivered.

Competitors

I TAMER (hadd): our fully-symbolic state-of-the-art planning
I πnn: The learned RL policy executed without backtracking
I TAMER (hnn): our planner equipped with the learned heuristic hnn

Results

10-fold cross-validation and sensitivity analysis over 100K RL episodes
MaJSP

fold
(size: 77)

TAMER (hadd) # episodes πnn TAMER (hnn)
solved avg plan size solved avg plan size solved avg plan size

1 52 14 50k 66 25 73 18
100k 71 22 73 18

2 58 14 50k 70 22 75 17
100k 70 19 72 17

3 58 14 50k 70 21 73 17
100k 73 19 75 17

4 57 13 50k 66 21 72 17
100k 68 20 76 17

5 55 15 50k 66 25 75 19
100k 69 21 69 19

6 60 14 50k 66 23 76 17
100k 69 17 77 17

7 54 14 50k 68 21 76 18
100k 75 21 73 18

8 57 14 50k 61 23 73 18
100k 73 20 69 18

9 57 14 50k 71 25 74 18
100k 66 21 70 18

10 52 14 50k 72 21 77 19
100k 65 22 54 16

all 560 14 50k 676 23 744 18
100k 699 20 708 18

0 20000 40000 60000 80000 100000
Episodes

0%

20%

40%

60%

80%

100%

S
ol

vi
ng

R
at

e

0 20000 40000 60000 80000 100000
Episodes

0%

20%

40%

60%

80%

100%

S
ol

vi
ng

R
at

e

No Constants and Goals
No Fluents
No Actions
No Constants
No Goals
No TN
All

Kitting
fold

(size: 109)
TAMER (hadd) # episodes πnn TAMER (hnn)

solved avg plan size solved avg plan size solved avg plan size

1 44 15 50k 66 18 99 21
100k 97 21 107 21

2 35 15 50k 66 21 95 22
100k 82 21 97 21

3 38 15 50k 55 18 83 20
100k 97 20 99 20

4 45 15 50k 68 20 98 19
100k 88 22 100 21

5 47 15 50k 85 19 101 19
100k 88 19 101 19

6 38 15 50k 53 20 85 20
100k 78 22 108 23

7 30 15 50k 44 18 75 19
100k 90 24 106 23

8 42 15 50k 65 18 95 20
100k 95 21 104 21

9 36 15 50k 44 15 70 17
100k 89 22 91 20

10 40 14 50k 71 19 95 21
100k 92 21 102 21

all 395 15 50k 617 19 896 20
100k 896 21 1015 21

0 20000 40000 60000 80000 100000
Episodes

0%

20%

40%

60%

80%

100%

S
ol

vi
ng

R
at

e

0 20000 40000 60000 80000 100000
Episodes

0%

20%

40%

60%

80%

100%

S
ol

vi
ng

R
at

e

No Fluents
No Actions
No Constants
No Goals
No TN
All

CONCLUSION

Take-Away Message

I Strict correlation between planning heuristics and state value functions in RL
I Use RL to automatically synthesize planning heuristics looks promising

Future work

I Extend the approach to overcome limitations
. Fixed state size, Fixed network architecture, Bounded numeric values, Incomplete temporal information

I Supervised learning from search spaces

